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Abstract— We propose a new type of non-binary LDPC codes
defined over multiple Galois fields. The so called multi-Galois
LDPC code can adapt to the profile of a frequency selective
channel and is suitable for multi-carrier transmissions with
quadrature amplitude modulations.

I. INTRODUCTION

The era of modern coding theory is mainly characterized
by the development of powerful binary error-correcting codes
that can be iteratively decoded. Robert Gallager proposed low-
density parity-check (LDPC) codes with arbitrary alphabet
size (see chap. 5 in [13]) a few years after the invention of
the most famous non-binary error-correcting codes, i.e. the
Reed-Solomon codes [6][21]. Following the empirical results
by Davey and MacKay [8][9] on low-density parity-check
codes built on finite fields alphabets, recent works appeared
on the analysis and design of non-binary LDPC codes on both
binary and non-binary channels. Authors have been motivated
by the excellent results on the performance of LDPC codes
[16][17]. The application and analysis of q-ary LDPC codes
have been made by Bennatan and Burshtein under maximum
likelihood decoding [3] and iterative decoding including the
development of extrinsic information transfer charts [4] for
arbitrary channels. Analysis via the Gaussian approximation
has been proposed by Li et al. [19]. The density evolution of
non-binary LDPC codes has been also studied for the erasure
channel [25]. New constructions have been proposed for quasi-
cyclic codes [20] and for non-binary codes via their binary
image [24]. Finally, a very recent work by Kelley et al. [18]
considers the pseudo-codewords of non-binary LDPC codes
with two-dimensional modulations.

High data rate digital communication channels are non-
binary. Symbols from non-binary LDPC codes can be naturally
mapped into modulation symbols. Matching the alphabet of
the error-correcting code to the channel alphabet explains the
recent fever described above on studying non-binary LDPC
codes. Similar examples can be found in the literature of com-
munications and coding [26][14] before the rush on non-binary
LDPC coding. An extremal case of code-channel matching is
the example of orthogonal signals that can achieve the capacity
of a Gaussian channel under coherent detection [30][29]. The
efficiency of trellis coded modulations [28] is also due to code-
modulation matching.

Let us look to matching or unmatching the code-modulation
pair from a probabilistic decoding point of view. When a
binary LDPC code is associated to a non-binary memoryless
modulation, conversion of modulation symbol likelihoods into
code bit probabilities is needed before decoding. In some
cases, a backward conversion is also required where binary
extrinsic probabilities generated by the LDPC decoder are fed
back to the demodulator in order to close the iterative detec-
tion/decoding loop. Standard information theoretical tools [7]
show that a significant loss in performance may be caused
by symbol-to-bit and bit-to-symbol conversions. On the other
hand, when the code alphabet is matched to the modulation
alphabet, the channel likelihoods are directly processed by the
decoder without any information loss, and there is no need to
iterate between demodulation and decoding.

In this paper, we propose a non-binary LDPC code con-
struction with multiple Galois fields. The Tanner graph of the
code has symbol nodes belonging to different finite fields.
The checknodes of our LDPC code are also connected to
symbol nodes from various Galois fields. This LDPC code
will be called multi-Galois LDPC code. In the context of
frequency selective channels, this code is equivalently called
adaptive LDPC code and will be denoted by Ca. We restrict
the construction to simple checknodes defined by non-binary
single parity-check (SPC) codes. For practical reasons, only
the following finite fields of characteristic 2 are considered:
GF (2), GF (4), GF (8), GF (16), GF (64), and GF (256). The
LDPC code Ca may make use of all these fields at a time. The
elements of GF (2m) will be matched to a complex symbol
belonging to a bidimensional quadrature amplitude modulation
(QAM) of size 2m. The structure of Ca depends on the channel
profile as described in the next section. In section III we give
the generalized version of Hartmann-Rudolph decoding rule
valid for any Galois field. This rule is then simplified for non-
binary SPC codes, i.e. the checknodes of Ca. Experimental
results on a multicarrier QAM-modulated selective channel
are included in the last section of this paper.

II. MULTI-GALOIS CODE CONSTRUCTION

Let ℵ3 denote the following ensemble of 4 nested finite
fields starting from the smallest one and continuing by those
having the order-3 element

ℵ3 = {GF (2), GF (4), GF (16), GF (256)} (1)



Similarly, let ℵ7 denote the following ensemble of 3 nested
finite fields starting from the smallest one and continuing by
those having the order-7 element

ℵ7 = {GF (2), GF (8), GF (64)} (2)

The bipartite graph representation of Ca is given in Fig. 1. As
usual, symbol nodes are drawn as circles and checknodes are
drawn as rectangles. Edges from type-1 checknodes can only
connect to symbols from ℵ3. Edges from type-2 checknodes
can only connect to symbol nodes in ℵ7. The gluing of the
two subgraphs is guaranteed by binary symbol nodes and by
binary checknodes. The latter are of both type-1 and type-2.
Binary symbol nodes are sometimes called state variables and
their value may not be transmitted on the channel, i.e. state
variables can be punctured.

GF (2)

type-1 checks

type-2 checks

ℵ3

ℵ7

Fig. 1. Tanner graph representation of the multi-Galois LDPC code.

A checknode in Ca is a non-binary SPC code defined over
GF (Q). For type-1 checknodes, GF (Q) must be in ℵ3.
Any symbol connected to type-1 checknodes belongs to
GF (q) ∈ ℵ3 where 2 ≤ q ≤ Q ≤ 256. Similarly, for
type-2 checknodes, GF (Q) must be in ℵ7. Any symbol
connected to type-2 checknodes belongs to GF (q) ∈ ℵ7

where 2 ≤ q ≤ Q ≤ 64. While performing the sum-product
probabilistic decoding of the multi-Galois code, a symbol
node defined over GF (q) sends a message on each outgoing
edge represented by a vector of q extrinsic probabilities. If
a checknode is defined over GF (Q = q), it also receives a
message represented by a vector of q probabilities on each
of its incoming edges. In the case where q < Q, the symbol
node must extend its message by zero padding.

Let N denote the number of symbol nodes in the bipartite
graph, i.e. N is the non-binary length of Ca. Let Nq denote
the number of symbols belonging to GF (q), q = 2i. Then,

the binary image of Ca has length (expressed in bits)

Nb =
∑

i=1,2,3,4,6,8

i×N2i (3)

On the right-hand of the Tanner graph, let Lq denote the
number of checknodes defined over GF (q). The number of
equivalent binary checks is

Lb =
∑

i=1,2,3,4,6,8

i× L2i (4)

If the state variables are not punctured, the adaptive multi-
Galois code Ca has rate Rc = Kb/Nb where Kb = Nb − Lb.
The design rules described above can be briefly stated in terms
of the parity-check matrix Ha defining Ca:
• Consider a column of Ha. All entries must belong to the

same finite field.
• Consider a row of Ha. Entries can be selected from

different finite fields, but they must not mix ℵ3 and ℵ7

except for binary entries.
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Fig. 2. Illustration of waterfilling associated with the multi-Galois code.

Now, let us describe how the parameters of Ca depend on
the channel profile. The channel is assumed to be frequency
selective (inter-symbol interference channel). A multi-carrier
orthogonal frequency division multiplexing (OFDM) converts
the channel into Nc parallel flat sub-channels, where Nc is
the number of OFDM sub-carriers. For simplicity reasons and
without loss of generality, it can be assumed that the length
of Ca is less than or equal to the number of sub-carriers,
N ≤ Nc. If the channel model is defined by a tapped delay
line of length ν + 1, the channel frequency response is

H(f) =
ν∑

k=0

hke
−j2πf∆k/W (5)

where hk is the complex coefficient of the kth path, ∆k is the
time delay of the kth path, W is the frequency bandwidth of
the OFDM modulated signal, and ν is the channel memory.
Sub-carrier i is located on frequency fi = (i − 1) ×W/Nc,
where i = 1 . . .Nc. An illustration of the channel frequency



profile is given in Fig. 2. The signal-to-noise ratio Esi/N0

of channel i can be determined by the classical waterfilling
technique [7]. The water level θSNR maximizes Shannon
capacity under the constraint of a fixed total transmitted
energy. Then, the capacity is evaluated by

Ci = log2

(
1 + |H(fi)|2 ·

Esi
N0

)
(6)

The 2m-QAM modulation on channel i is chosen such
that m is the maximum integer that satisfies the inequality
mRc ≤ Ci. Other methods can be proposed for the adaptation
of QAM size to the channel profile, we restrict ourselves to
this simple method since QAM adaptation (also known as bit
allocation in OFDM) is out of the scope of this paper.

Tap index 1 2 3 4 5 6 7 8 9 10 11 12
Delays 0 1 3 5 8 11 13 17 23 31 32 50

Powers (dB) -4 -3 0 -2.6 -3 -5 -7 -5 -6.5 -8.6 -11 -10

TABLE I

URBAN AREA CHANNEL CHARACTERISTICS.

N2 N4 N8 N16 N64 N256
Rc = 1/2 2-QAM 4-QAM 8-QAM 16-QAM 64-QAM 256-QAM

SNR=7 dB 71 25 35 80 50 24

TABLE II

NUMBER OF SUB-CARRIERS FOR EACH MODULATION AT SNR = 7 DB.

L2 L4 L8 L16 L64 L256
2-QAM 4-QAM 8-QAM 16-QAM 64-QAM 256-QAM

0 16 24 54 34 14

TABLE III

NUMBER OF CHECKNODES FOR EACH GALOIS FIELD AT SNR=7DB.

Given the channel frequency response and the code length
N , the number Nq of symbol nodes in GF (q) is determined
via (5) and (6). Then, by taking into account the constraints
imposed by the design rules of Ca and the degree distribution
of nodes in the graph, the number Lq of checknodes defined
over GF (q) is determined via integer linear programming.

As an example, a urban area mobile radio channel is given in
Table I. The channel has 12 taps with delays multiple of 0.1
microseconds. For Nc = 300 sub-carriers, Table II indicates
the number of sub-carriers for each modulation at SNR=7dB.
Assuming that Ca is a regular (3,6) multi-Galois LDPC code,
the number of checknodes in GF (q) found by integer linear
programming is given in Table III. The number of punctured
state variables is 36. The coding rate is Rc = 0.401.

III. NON-BINARY HARTMANN-RUDOLPH DECODING RULE

A posteriori probability decoding of checknodes in a
non-binary multi-Galois code can be performed exhaustively
at the expense of a high complexity in O(qd−1) where d
is the checknode degree. Fast optimal decoders have been
proposed [5][10][27][1] and they are all based on exploiting
the duality property. The original idea of decoding any linear
binary (n, k)2 code via its dual code is found in [15] and [2].

The complexity degree 2k is replaced by 2n−k. This duality
property is simply the result of Poisson summation formula
as elegantly explained by Forney [12].

We describe below a generalization of Hartmann and
Rudolph decoding rule for Galois fields of size q = pm

with characteristic p. We follow a similar proof as in [15]
but with any m ≥ 1. The obtained decoding rule can be
applied to checknodes even more universal than SPC codes,
e.g. on generalized low density codes [23]. Low complexity
sub-optimal decoding rules for non-binary SPC codes have
been also considered in the literature, e.g. [11].

Firstly, let us define the trace of an element and two
characters in finite fields [22][21]. The trace maps
β ∈ GF (pm) into an element in the original field,
τ : GF (pm) → GF (p). Many definitions are equivalent, let
us take τ(β) = β0, when β = βm−1α

m−1 + . . . + β1α + β0

where α is a primitive element of GF (pm). The first character
we define is χβ : GF (pm) → C, χβ(γ) = ωτ(βγ), where

ω = e2π
√

−1
p . The second character is χ

u
: GF (pm)n → C,

defined by χ
u
(v) = ωτ(<u,v>), where < u, v > is the scalar

product of the two vectors u and v.

The non-binary decoding rule is: Set ĉi = a, where a ∈
GF (q = pm) maximizes the expression:

Ai(a) =
∑

β∈GF (q)

χβ(−a).

qn−k∑

j=1



n−1∏

l=0

∑

γ∈GF (q)

χ(c′jl−βδil)(−γ)P (yl|γ)


 (7)

where c = (c0, c1, ..., cn−1) is a codeword of C(n, k) defined
over GF (q), c′j = (c′j0, c

′
j1, ..., c

′
jn−1) the jth codeword of

the dual code C⊥(n, n − k), y = (y0, y1, ..., yn−1) is the
received word, ĉi is the estimate of ci, β and γ ∈ GF (q),
and δij = 1 if i = j and zero otherwise.

Theorem:
¯

Decoding rule (7) maximizes the probability that
ĉi equals ci.

Proof : Let us show that P (ci = a|y) = λAi(a), where λ is
a positive constant. We write

P (ci = a|y) =
∑

c∈C,ci=a
P (y|c).[P (c)/P (y)] (8)

Assume in a first step that P (c) = p−mk (equiprobable
codewords), then (8) becomes

P (ci = a|y) = [p−mk/P (y)]
∑

c∈C
P (c|y)δ0,c.ei−a (9)

where ei = (δi0, δi1, ..., δi(n− 1)). Using Fourier transform
we can write,

δ0,c.ei−a = q−1.
∑

β∈GF (q)

χβ(c.ei − a) (10)



P (y|c) = q−n.
∑

u∈GF (q)n

F (y, u)χu(c) (11)

and
F (y, u) =

∑

v∈GF (q)n

P (y|v)χu(−v) (12)

Substituting (10) and (11) in (9) yields

P (ci = a|y) =[p−m(n+k+1)/P (y)] ·
∑

β∈GF (q)

χβ(−a).

∑

u∈GF (q)n

F (y, u)[χ
(u+β.ei)

(c)] (13)

The orthogonality property of group characters makes (13) as

P (ci = a|y) =[p−m(n+k+1)/P (y)] ·
∑

β∈GF (q)

χβ(−a).

∑

c′∈C⊥

F (y, c′ − β.ei) (14)

By assuming that the channel and modulation are memoryless
we obtain

F (y, u) =
∑

v∈GF (q)n

n−1∏

l=0

P (yl|vl)χul(−vl)

=

n−1∏

l=0

∑

γ∈GF (q)

P (yl|γ)χul(−γ) (15)

Substituting (15) in (14) leads to

P (ci = a|y) = [p−m(n+k+1)/P (y)] ·Ai(a) (16)

�

For the special case of non-binary SPC codes on GF (2m)
(the dual is a repetition code), we have

Ai(a) ∝ P (yi|a) · FHT{
n−1∏

l=0,l6=i
FHT [P (yl|γ)]} (17)

where FHT is a fast Hadamard transform on q = 2m points.
As stated in the proof of the above theorem, if codewords are
not equiprobable (which is the case in a multi-Galois LDPC),
then simply multiply the observations in (17) by their symbol
a priori information.

IV. EXPERIMENTAL RESULTS

Let us start with a toy example illustrated in Fig. 3. It
includes an elementary 4-ary code C4(N4 = 3, L4 = 2,K4 =
1), an elementary 8-ary code C8(N8 = 3, L8 = 2,K8 = 1),
and two binary symbol nodes with one binary checknode
(N2 = 2 and L2 = 1). The state variables are punctured. The
upper part of Ca is essential in order to glue the quaternary
and the octal codes. The elementary codes C4 and C8 are of
equal rate 1/3. For the adaptive multi-Galois code Ca:
Nb = N2 + 2 ∗N4 + 3 ∗N8 = 17
Lb = L2 + 2 ∗ L4 + 3 ∗ L8 = 11
Kb = Nb − Lb = 6
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Fig. 3. Bipartite graph of a toy multi-Galois LDPC code.

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  1  2  3  4  5  6  7  8  9

B
it 

E
rr

or
 R

at
e 

(B
E

R
)

Eb/N0 (dB)

Adaptive LDPC Toy Example over AWGN

No coding

C4C8Cadap

No coding
Adaptive LDPC

4-ary LDPC
8-ary LDPC

Fig. 4. Performance of the toy multi-Galois code defined in Fig. 3.

Rc = Kb/(Nb −N2) = 0.4
The parity-check matrices of C4, C8, and Ca are respectively

H4 =

(
1 2 0
0 1 3

)
H8 =

(
1 3 0
0 5 6

)

Ha =




1 1 0 0 0 0 0 0
1 0 1 2 0 0 0 0
0 1 0 1 3 0 0 0
1 0 0 0 0 1 3 0
0 1 0 0 0 0 5 6




The error rate performance of Ca is shown in Fig. 4 for an
additive white Gaussian noise channel and a binary modu-
lation. We easily remark that the adaptive code improve the
performance of the two non-binary codes.
Figures 5 show the bit error rate for an adaptive multi-Galois
LDPC code matched to an OFDM system with Nc=300 sub-
carriers which are divided to N2=75 and 5 equal number N2i ,



for i =2, 3, 4, 6 and 8. All variables are transmitted over
the selective channel. The number of checknodes is L2=0
and Lq = 30 for all non-binary checks. We have Nb=1110,
Lb=690, and Rc=0.4. We compare this adaptive LDPC code
to systems where we use a binary LDPC code and an adaptive
modulation. The binary LDPC codes considered have coding
rate equal to 0.5, 0.4, and 0.25. We remark in Fig. 5 that the
adaptive LDPC code improves the performance by up to 1dB
at BER=10−4 with respect to the binary rate 0.4 code. It also
approaches closely the one with rate 0.25. At high SNR, the
behavior is dominated by the binary variable and binary check
nodes. A similar behavior is observed on Fig. 6 for the Urban
Area Channel given in Table I.
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