Exercice I - The Sphere Decoder, an example with A_2

Consider the hexagonal point lattice $A_2 \subset \mathbb{R}^2$. The studied lattice version is generated by the following generator matrix M written in row convention

$$M = \begin{pmatrix} 1 & 0 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}$$

A lattice point $x = (x_1, x_2) \in A_2$ is defined by $x = zM$, where $z = (z_1, z_2) \in \mathbb{Z}^2$. Hexagonal lattice points and their Voronoi cells are illustrated in Figure 1. Let $d_{E_{\text{min}}}$ denote the minimum Euclidean distance of A_2 generated by the above matrix M. The packing radius $\rho = d_{E_{\text{min}}}/2$ and the covering radius R are depicted in Figure 2.

1) Determine ρ and R.
2) What is the volume of a Voronoi cell?
3) Check that the packing density Δ of A_2 is equal to 0.906, i.e. 90.6% of the bidimensional space is covered by the packing balls of A_2.
4) Let $G = MM^t = [g_{ij}]$ be the Gram matrix. We define the following quadratic form $Q(z)$ associated to the squared Euclidean norm

$$Q(z) = \|x\|^2 = xx^t = zGz^t = \sum_i \sum_j g_{ij}z_iz_j$$

Prove that $Q(z)$ can be written as $Q(z) = q_{11}Z_1^2 + q_{22}Z_2^2$, where $Z_1 = z_1 + q_{12}z_2$ and $Z_2 = z_2$. Find the values of q_{ij}. For higher dimensions $n \geq 2$, a Cholesky or a QR decomposition is applied in order to write $Q(z) = \sum_{i=1}^n q_{ii}Z_i^2$.

5) The enumeration of lattice points satisfying $\|x\|^2 \leq C$, where $C \in \mathbb{R}^+$ is a fixed squared radius, is equivalent to solving $Q(z) \leq C$. Let $S(0, \sqrt{C})$ denote the sphere with center 0 and radius \sqrt{C}. Prove that enumerating lattice points inside $S(0, \sqrt{C})$ is equivalent to solving
the following recursive inequalities

\[-\sqrt{\frac{C}{q_{22}}} \leq z_2 \leq +\sqrt{\frac{C}{q_{22}}}\]

\[-\sqrt{\frac{C-q_{22}z_2^2}{q_{11}}} - q_{12}z_2 \leq z_1 \leq +\sqrt{\frac{C-q_{22}z_2^2}{q_{11}}} - q_{12}z_2\]

(3)

Fig. 1 – The hexagonal point lattice \(A_2\) in the bidimensional plane.

Fig. 2 – Representation of the packing radius \(\rho\) and the covering radius \(R\).

6) Let \(y = (y_1, y_2) \in \mathbb{R}^2\) be a randomly chosen point, e.g. \(y\) may be the output of a Gaussian channel with \(y = x + \eta\), where \(\eta\) is an additive white Gaussian noise and \(x \in A_2\). Let \(\epsilon\) be a
vanishing positive real number.

6.a) Prove that $S(y, R + \epsilon)$ contains at least one lattice point.
6.b) What is the maximum number of lattice points inside $S(y, R + \epsilon)$?

7) A sphere decoder is a decoder that finds the closest lattice point to y by enumerating all lattice points inside $S(y, R + \epsilon)$ and keeping the nearest one. Hence, the sphere decoder for A_2 takes $C = R^2 + \epsilon$ and solves $\|y - x\|^2 \leq C$ in order to get

$$x_{ML} = \arg \min_{x \in A_2} \|y - x\|^2$$

7.a) Prove that the sphere decoder is given by the inequalities of question 5 above, where z is replaced by $z - \xi$ and $\xi = yM^{-1}$.
7.b) Apply the sphere decoder in order to find the closest lattice point x_{ML} to the received noisy point given by $y = (1.75, 1.75)$.

Exercice II - The Gosset lattice E_8, complex construction

The point lattice E_8 yields the densest lattice packing in \mathbb{R}^8. It is the unique lattice in dimension 8 with an Hermite constant (fundamental gain) equal to 2, and a kissing number equal to 240. Recall that the fundamental gain of a real lattice $\Lambda \in \mathbb{R}^n$ of rank n is defined as

$$\gamma(\Lambda) = \frac{d^{2}_{E_{min}}(\Lambda)}{\sqrt[2n]{\text{vol}(\Lambda)}}$$

where $\text{vol}(\Lambda) = |\text{det}(M)|$, M being a square $n \times n$ generator matrix of Λ. The kissing number τ is given by the number of lattice points on the first lattice shell, also equal to the number of neighbouring packing balls tangent to the one centered on the origin.

Let $\mathcal{G} = \mathbb{Z}[i] \sim \mathbb{Z}^2$ denote the ring of Gaussian integers. Let $\phi = 1 + i \in \mathcal{G}$, where $i = \sqrt{-1}$. The ring \mathcal{G} can be partitioned via two subgroups, i.e. the partition chain $\mathcal{G}/\phi \mathcal{G}/\phi^2 \mathcal{G}$ is used. At depth 1, we have $\mathcal{G} = \phi \mathcal{G} + [\mathcal{G}/\phi \mathcal{G}]$. At depth 2, we have $\mathcal{G} = \phi^2 \mathcal{G} + [\phi \mathcal{G}/\phi^2 \mathcal{G}] + [\mathcal{G}/\phi \mathcal{G}]$.

1) Find the order of the quotient groups $[\mathcal{G}/\phi \mathcal{G}]$ and $[\phi \mathcal{G}/\phi^2 \mathcal{G}]$. Tip : Determine the fundamental volumes of both lattices \mathcal{G} and $\phi \mathcal{G}$. Find also $[\mathcal{G}^N/g \mathcal{G}^N]$, where $g \in \mathcal{G}$ and $N \in \mathbb{N}$.
2) Give the typical coset leaders of the partition $\mathcal{G}/\phi \mathcal{G}$, i.e. the typical elements of the quotient group $[\mathcal{G}/\phi \mathcal{G}]$. Use Figure 3 for illustration.
3) Give the typical coset leaders of the partition $\phi \mathcal{G}/\phi^2 \mathcal{G}$, i.e. the typical elements of the quotient group $[\phi \mathcal{G}/\phi^2 \mathcal{G}]$. Use Figure 4 for illustration.
4) Consider the complex lattice \(\Lambda = (4, 1, 4) + \phi(4, 3, 2) + \phi^2 G^4 \), where \((4, 1, 4)\) is the binary repetition code of length 4, and \((4, 3, 2)\) is the binary single parity-check code of length 4. In the formula of \(\Lambda \), binary elements 0 and 1 should be embedded into the complex ring \(G \).

4.a) Consider the chain \(G^4/\Lambda/\phi^2 G^4 \). Deduce the fundamental volume of \(\Lambda \).

4.b) Determine the minimum Euclidean distance of \(\Lambda \) and hence its Hermite constant. At this point, you must find that \(\Lambda = E_8 \).

4.c) From the complex formula of \(E_8 \), check that \(\tau = 240 \) by enumerating all lattice points of shortest length.

5) An encoder for a finite size constellation carved from \(E_8 \) is shown in Figure 5. This encoder is based on the formula \(E_8 = (4, 1, 4) + \phi(4, 3, 2) + \phi^2 G^4 \) (B construction).

5.a) What is the number of uncoded bits per complex symbol in the coded 64-QAM? What should be the uncoded QAM reference constellation?

5.b) Compare the coded 64-QAM and the uncoded reference, and find again the 3dB gain over a Gaussian channel given in the Hermite constant.

![Diagram](image_url)

Fig. 3 – Depth-1 partitioning of a 64-QAM corresponding to \(G = \phi G + [G/\phi G] \).
Fig. 4 – Depth-2 partitioning of a 64-QAM corresponding to $\mathcal{G} = \phi^2 \mathcal{G} + [\phi \mathcal{G}/\phi^2 \mathcal{G}] + [\mathcal{G}/\phi \mathcal{G}]$.

Fig. 5 – Encoder for an E_8 constellation. Information rate is 5 bits per complex dimension.