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Abstract—This paper contains a summary of the arguments
used to show how to achieve capacity of the AWGN channel with
Voronoi constellations of LDA lattices under lattice decoding. No
dithering is required in the tranmission scheme and capacity
is achievable with LDA lattices whose parity-check matrices
have constant row and column degrees. Although most of the
technical details of the proof cannot be treated here, the reader
is introduced to the fundamentals and novelties of the authors’
approach to the problem. The random capacity-achieving LDA
ensemble is presented and the definition of D-goodness of a
bipartite graph is given. As an example of the power of this tool
for investigating LDA lattices, a lemma about their minimum
Hamming distance is provided.

I. INTRODUCTION

This paper addresses the problem of communication over
the Additive White Gaussian Noise (AWGN) channel with
lattice codes and lattice decoding. This decoding strategy is
suboptimal with respect to the maximum likelihood (ML)
decoder, but its easier algorithmic nature makes it appealing
for both theoretical analysis and practical implementation.

Erez and Zamir [11], [18] were the first to provide a
full proof that capacity can be achieved in this context.
Their solution is based on the Modulo-Lattice Additive Noise
(MLAN) channel and Voronoi constellations with Construction
A lattices. More recently, Belfiore and Ling [15] proposed
a solution that involves a non-uniform distribution on the
channel inputs and a probabilistically finite codebook.

Once the theoretical problem of non-constructively achiev-
ing capacity was solved, it left the place to the challenge of
designing some constructive families of lattices adapted to
iterative decoding with close-to-capacity performance. Most of
the proposed families are inspired by LDPC and turbo codes
[1], [21]–[23] and an interesting work about lattices based
on polar codes exists [25]; the latter are also shown to be
capacity-achieving.

The authors of this paper have contributed to this research
domain with the introduction of two lattice families: the most
recent are the Generalized Low-Density (GLD) lattices [3],
[4]. They show great performance under iterative decoding
and numerical simulations have been run in remarkably high
dimensions (up to one million). Moreover, [10] provides a the-
oretical analysis about the possibility of achieving the so called
Poltyrev capacity with infinite GLD-lattice constellations.

The second family is the one of Low-Density Construction
A (LDA) lattices, to which this paper is entirely devoted. LDA
lattices put together the strength of Construction A and LDPC
codes, and their corresponding parity-check matrix is sparse.
This is the key idea to reconduct their decoding to well-
performing, implementable LDPC decoding algorithms. LDA
lattices were referred to with this name by di Pietro et al. [6],
who also proposed an efficient iterative decoding algorithm
which yields very good performance. A theoretical analysis
of the Poltyrev-capacity-achieving qualities of infinite LDA
constellations was carried on by the same authors [7], [8],
whereas the “goodness” properties of LDA lattices are studied
in [24]. The problem of attaining capacity of the AWGN
channel with finite LDA constellations was approached and
solved in [9]. The main purpose of this work is to recall and
partially improve the latter result. Defoliated of all technical
hypotheses, our main accomplishment can be stated as follows:

Theorem 1. For every SNR > 1, there exists a random
ensemble of LDA lattices that achieves capacity of the AWGN
channel under lattice encoding and decoding.

Notice that the restriction SNR ≤ 1 is not very constraining:
for very small SNR there is no need of using lattice con-
stellations for communications over the AWGN channel and
classical coded binary modulations are already known to work
in a more than satisfactory way [20].

For lack of space, this paper cannot contain the technical
proofs that lead to our result. Its aim is only to depict the
strategies and the theoretical tools that underlie them. A longer
and detailed version of this paper will be published soon and
a substantial part of this work is contained in [9].

A. Structure of the paper

Section II recalls some definitions about lattice constella-
tions. Section III presents the D-goodness of bipartite graphs.
Our LDA ensemble is depicted in Section IV, which also
describes the information transmission scheme. Section V
is a summary of the main features of the proof that LDA
lattices are capacity-achieving. It also contains a lemma on
their minimum Hamming distance.



B. Notation

A crucial parameter of our analysis is the prime number p
that underlies Construction A. We are interested in describing
its growth as a function of the lattice dimension n. For this
reason, p is defined as p = nλ for some positive constant λ.
Clearly, this is a slight abuse of notation that means, without
any undesired consequence, that p = p(λ) is the closest prime
number to nλ.

II. LATTICE CONSTELLATIONS FOR THE AWGN CHANNEL

We assume that the reader is familiar with lattices as
mathematical objects and constellations for the transmission
of information; excellent references are [5], [26]. We repeat
here some definitions, mainly for fixing our notation.

We exclusively deal with real lattices, i.e. discrete additive
subgroups of the Euclidean vector space Rn. Also, we suppose
that they are always full-rank and n indicates both the lattice
dimension and the dimension of the Euclidean space. The
Voronoi region of a point x of a lattice Λ is the set

V(x) = {y ∈ Rn : ‖y − x‖ ≤ ‖y − z‖, ∀z ∈ Λ r {x}}.

We call Voronoi region of the lattice, and denote it V(Λ), the
Voronoi region of 0. The volume of Λ is Vol(Λ) = Vol (V(Λ))
and its effective radius is the radius of the ball whose volume is
equal to Vol(Λ). Consider two lattices Λ and Λf ; we say that
they are nested if Λ ⊆ Λf . We call Voronoi constellation [12]
of two nested lattices the lattice code C = Λf ∩ V(Λ). In this
context, Λ is often called the shaping lattice and Λf the fine
lattice. We can deduce that the Voronoi constellation has car-
dinality Vol(Λ)/Vol(Λf ); its elements are the represantatives
of the congruence classes of Λf/Λ with minimum norm.

Definition 1. Let C = C[n, k]p ⊆ Fnp be a p-ary linear code
of length n and dimension k and let us naturally embed C
into Zn. If H is a parity-check matrix of C, we say that the
lattice Λ ⊆ Rn is built with Construction A from C when

Λ = C + pZn = {x ∈ Zn : HxT ≡ 0T mod p}.

H is called a parity-check matrix of Λ as well. Λ is called a
Low-Density Construction A (or briefly LDA) lattice if it is
built with Construction A from an LDPC code.

We recall that LDPC codes are linear codes whose parity-
check matrix has a great majority of zero entries [14], [20].

Definition 2. Let C be the capacity of our channel. A family
of lattice codes is capacity-achieving if for every δ > 0 and
for every ε > 0 there exists a lattice code in the family with
rate at least C− δ and decoding error probability at most ε.

Let x be the AWGN channel input and let y = x + w
be its random output, then the Wiener coefficient is α =
arg minβ∈R E[‖x − βy‖2]. The minimum in the previous
formula is usually called Minimum Mean Squared Error and
the Wiener coefficient is also called MMSE coefficient. It is
well known that, if E[‖x‖2] = nP and wi ∼ N (0, σ2) for
every i, then α = P

P+σ2 . We denote QΛ(·) the quantizer of a
lattice Λ associated with V(Λ): QΛ(y) = arg minx∈Λ ‖y−x‖.

Definition 3. A MMSE lattice decoder returns x̂ = QΛ(αy)
as the channel input guess.

Multiplication by α is essential for us to achieve capacity
with a lattice decoder, as it was for Erez and Zamir [11], [18].
We will give a geometrical explanation of this in Section V.

III. EXPANSION PROPERTIES OF BIPARTITE GRAPHS

Let G = (VL, VR, E) be an undirected bipartite graph; VL∪
VR is its set of (left and right) vertices and E its set of edges.
Let |VL| = n and |VR| = fn, for some constant non-zero
fraction f ∈ Q (that can be bigger than 1). If S is a subset
of vertices of a graph G, its neighborhood N(S) is defined as
the set of vertices of the graph that are incident to a vertex of
S. In a bipartite graph, N(S) ⊆ VR for every S ⊆ VL and,
vice versa, N(T ) ⊆ VL for every T ⊆ VR. We will consider
only biregular graphs: the neighborhood of any vertex of VR
(resp. VL) has cardinality exactly ∆ (resp. f∆). Let us denote
by F(n, f,∆) the family of graphs just defined.

Definition 4. Let D be a positive constant. A graph of
F(n, f,∆) is D-good from left to right if

∀S ⊆ VL s.t. |S| ≤ n

D + 1
, then |N(S)| ≥ fD|S|. (1)

Analogously, it is D-good from right to left if

∀T ⊆ VR s.t. |T | ≤ fn

D + 1
, then |N(T )| ≥ D|T |

f
.

We say that a graph of F(n, f,∆) is D-good if it is good both
from left to right and from right to left.

Lemma 1. Let G be a graph chosen uniformly at random
in F(n, f,∆), and let h(·) be the binary entropy function. If
D ≥ 1 and

∆ > max

{(
1 +

1

f

)1−
Dh

(
1
D

)
(D + 1)h

(
1

D+1

)
−1

,

D2 +
1

f
,
D2

f
+ 1

}
,

then limn→∞ P{G is D-good} = 1.

The proof of the previous lemma uses the same main ideas
that Bassalygo applies in [2]. The reader may also be interested
in comparing this lemma with Theorem 8.7 of [20, p. 431] and
reading therein about the construction of expander codes.

The D-goodness of the Tanner graphs [20] associated with
LDA lattices plays an essential role in the proof of Lemma 3
and Theorem 2. The way it is exploited to adapt some random-
coding arguments to the LDA case is definitely one of the most
novel tools of this work.

IV. THE RANDOM LDA ENSEMBLE AND THE
TRANSMISSION SCHEME

Our lattice codes are given by Voronoi constellations of
nested LDA lattices. First, let us fix two constants R and Rf
such that 0 < R < Rf < 1. Also, let us fix the constant



∆P , which is the number of non-zero entries per row of the
LDPC parity-check matrices. Our random shaping lattice Λ is
the LDA lattice generated by the following p-ary parity-check
matrix of dimension n(1−R)× n:

H =

(
H′

Hf

)
.

Its lower submatrix Hf , formed by its last n(1−Rf ) rows, is
the parity-check matrix of the random LDA fine lattice Λf . By
construction, we impose that H has exactly ∆P random entries
per row and ∆V = ∆P (1 − R) random entries per column.
Also, each column of Hf has exactly ∆P (1 − Rf ) random
entries per column. All the other entries are deterministically
fixed to 0 and their position is fixed once for all, as well.
The random entries of H are i.i.d. random variables with
equiprobable values in Fp. Of course, Λ ⊆ Λf and the random
Voronoi constellation is given by Λf/Λ. Lemma 1 guarantees
that the Tanner graph associated with the fine LDA lattice Λf
is D-good for every D ≥ 1 such that:

∆P > max

{
2−Rf
1−Rf

1−
Dh

(
1
D

)
(D + 1)h

(
1

D+1

)
−1

,

D2

1−Rf
+ 1

}
.

(2)

It can be shown that (2) suffices to claim that the graph
associated with the shaping LDA lattice Λ is D-good, too.

The points of the LDA-lattice constellation are in-
dexed by the pn(Rf−R) different syndromes of the form
(s1, s2, . . . , sn(Rf−R), 0, . . . , 0) associated with the matrix H,
with si ∈ Fp. More explicitly, let F(Rf−R)

p be the set of the
messages; the bijection

ϕ : Λf ∩ V(Λ)→ Fn(Rf−R)
p

x 7→ H′xT mod p

makes a constructive encoding possible. Our transmission
scheme works as follows: the sender pairs up a message and
a syndrome and transmits x, the corresponding constellation
point obtained via ϕ−1, over the AWGN channel. The receiver
gets the channel output y = x+w; by MMSE lattice decoding
of y, he gets x̂ = QΛf

(αy). The decoded message is the one
associated with ϕ(x̂). For every s′ ∈ Fn(Rf−R)

p , let x ∈ Λf be
any solution of the linear system H ′xT ≡ s′T mod p. Then,
ϕ−1(s′) = x−QΛ(x) and encoding can be done substantially
thanks to a lattice decoder, too.

Notice that our scheme differs from the others traditionally
proposed in the literature about lattices. We do not transform
the AWGN into a MLAN channel [11], [18] and, in particular,
we do not assume that the sender and the receiver share
the common randomness known as dither. The possibility of
avoiding dithering in this context had already been pointed
out by Forney [13], but no proof had ever been provided, to
the best of our knowledge. Furthermore, we keep an a priori
uniform disitribution on the lattice constellations and do not
introduce the random Gaussian coding proposed in [15], [25].

y

w

αy

0

x

h

Figure 1. Geometric interpretation: x is the channel input; ‖x‖2 = nP . The
AWG noise is w, with norm ‖w‖2 = nσ2. The channel output is y = x+w.
The Wiener coefficient α = P

P+σ2 is used for the MMSE scaling of y and
αy is the lattice decoder input. h is the effective noise after MMSE scaling.

V. OVERVIEW AND DISCUSSION ON OUR PROOF

We give here a general description of our proof, by the
means of a heuristic argument that does not take into account
all the probabilistic and asymptotic aspects of the rigorous
demonstration. With the use of the adverb “typically”, we will
mean “with probability tending to 1 when n tends to infinity”.

Our result is based on the following facts: first, the points
of the LDA constellation typically lie very close to the surface
of a sphere whose radius is essentially the effective radius of
the shaping LDA lattice. Then, the AWG noise is typically
almost orthogonal to the sent vector, in the sense that, if x
is our transmitted constellation point and w is the noise, then
|xwT | is “small enough”. Furthermore, the “effective noise”
due to MMSE scaling and the sent point are not decorrelated.
Consequently, it is not possible to show that MMSE lattice
decoding works independently of the sent point. Nevertheless,
Theorem 2 is based on the fact that the number of points
for which this does not happen is not big enough to perturb
the average error probability of the family. Finally, we look
for lattice points inside a sphere centered at the MMSE-scaled
channel output with a very specific radius. Basically, there will
be no decoding error if the only lattice point in this decoding
sphere is the transmitted one.

Now, let us try to understand the geometric sense of the
elements that we have just listed. So, suppose that the channel
input is a point x whose norm is fixed to be ‖x‖ =

√
nP , for

some P > 0 (Lemma 3 specifies this value). Suppose also that
xwT = 0 (this is a stronger hypothesis than what the actual
noise allows to assume, but it helps to understand the more
general scenario); if y = x + w is the channel output, then
‖y‖2 = ‖x‖2 +‖w‖2. We call σ2 the Gaussian noise variance
per dimension. Basic Euclidean geometry (see Figure 1) tells
us that multiplying y by the Wiener coefficient α helps in
bringing the decoder input closer to the sent point.

The receiver decodes αy and there is no decoding error if
the closest lattice point to αy is x. We can show that this
typically happens if SNR = P

σ2
> 1 and ‖αy − x‖2 <

np2(1−Rf )/(2πe). Notice that the latter bound defines what
we called the decoding sphere before. It concretely means



that our constellation tolerates an effective noise after MMSE
scaling whose variance per dimension is less than σ2

Pol =
p2(1−Rf )/(2πe). This value is far from being fortuitous: it
is precisely the so called Poltyrev limit or Poltyrev capacity
of the random infinite constellation Λf [9], [16], [19]. We
intuitively understand that this is the good condition on the
maximum bearable noise, admitting that no problem comes
from the fact that the effective noise and the sent point x are
not decorrelated (this would be the case if we used dithering).

The condition on the signal-to-noise ratio can be simply
understood with the following argument: let us call h = αy−x
and suppose that it takes the maximum value allowed by the
Poltyrev limit: ‖h‖2 = nσ2

Pol (which also can be shown to
correspond to the rate of the constellation that equals capacity).
If we want good decoding, we need αy to be closer to x than
to 0, because the latter deterministically belongs to any lattice;
in other terms, it is necessary that ‖αy‖2 > ‖h‖2. An easy
computation based on Figure 1 shows that this holds true if
and only if P > σ2 or, equivalently, SNR > 1. This gives a
first explanation why we do not treat the case SNR ≤ 1.

We prove that MMSE decoding works by a probabilistic
approach, showing that almost always the only lattice point
inside the decoding sphere B centered at αy is the sent
point x. The average argument that we apply leads to the
estimation of (a more elaborated version of) the following
sum:

∑
z∈Br{x} P{z ∈ Λf | x ∈ Λf}. Decoding without

errors corresponds to a sum which converges to 0. The easiest
situation to deal with is when the two events {z ∈ Λf} and
{x ∈ Λf} are independent, but they may not be, because the
multiplication by α adds some correlation between x and the
effective noise αy − x. Erez and Zamir’s dithering technique
is a method to eliminate this correlation. In our case, there is
a priori some x for which the probability in the previous sum
turns out to be “bigger” than desired, while at the same time
we need to show that the whole sum is “small”. The originality
of our analysis consists of deducing that the proportion of this
kind of points in the constellation is very small.

Some considerable difficulties in estimating P{z ∈ Λf | x ∈
Λf} arise because the parity-check matrices of LDA lattices
are sparse. These difficulties have to be treated with much care
and the D-goodness of the associated Tanner graphs is of great
help. As an example of the techniques used in the proofs of
Lemma 3 and Theorem 2, we propose the following lemma:

Lemma 2. Let Λf be our random n-dimensional LDA fine
lattice with p = nλ, D > (1−Rf )−1, and λ > (D(1−Rf )−
1)−1. Suppose also that (2) holds true. For every x ∈ Λf ,
let w(x) = |{i : xi 6= 0}|. Then, for every constant δ <
D(1−Rf )/(D + 1),

lim
n→∞

P
{
x ∈ Λf r pZn

∣∣w(x) ≤ δn
}

= 0.

Hence, the minimum Hamming distance of the LDPC code
underlying Λf is typically lower bounded by D(1−Rf )

(D+1) n−o(1).

Proof: Let Λf = Cf + pZn, where Cf is the random
LDPC code defined by Hf . For x ∈ Fnp r {0}, consider the

random variables

Xx =

{
1, if x ∈ Cf
0, otherwise

and X =
∑
x∈Fn

p

1≤w(x)≤δn

Xx.

Thus, X counts the number of points of Cf of Hamming
weight 1 ≤ w(x) ≤ δn. To conclude, it suffices to prove that

lim
n→∞

E[X] = lim
n→∞

∑
x∈Fn

p

1≤w(x)≤δn

P {x ∈ Cf} = 0.

We will split the previous sum into two smaller sums and show
that both of them converge to 0.

Case 1: w(x) ≤ n/(D + 1). If Supp(x) = {xj 6= 0}
and N(Supp(x)) is its neighborhood in the Tanner graph
associated with Hf , notice that

P {x ∈ Cf} = P
{
Hfx

T ≡ 0T mod p
} (a)
≤
(

1

p

)|N(Supp(x))|

(b)
≤
(

1

p

)D(1−Rf )| Supp(x)|

;

(a) comes from the fact that for every parity-check equation hi
with i = 1, 2, . . . , n(1−Rf ), the events {hixT ≡ 0T mod p}i
are independent; moreover, parity-check equations connected
to only-0 variables are trivially satisfied. (b) is a consequence
of the D-goodness of the Tanner graph: simply apply (1) to
S = Supp(x) with f = 1−Rf . Therefore,∑

x∈Fn
p

1≤w(x)≤n/(D+1)

P {x ∈ Cf}

≤
bn/(D+1)c∑

w=1

∑
x∈Fn

p

w(x)=w

(
1

p

)D(1−Rf )w

≤
bn/(D+1)c∑

w=1

(
n

w

)(
p− 1

pD(1−Rf )

)w

≤
bn/(D+1)c∑

w=1

(
n1−λ(D(1−Rf )−1)

)w
→ 0,

because of the conditions on λ and D.
Case 2: n/(D + 1) < w(x) ≤ δn. Applying (1) to any

S ⊆ Supp(x) of size n/(D+1), the D-goodness of the Tanner
graph implies that |N(Supp(x))| ≥ D(1−Rf )

D+1 n. Therefore,∑
x∈Fn

p

n/(D+1)<w(x)≤δn

P {x ∈ Cf}

≤
bδnc∑

w=bn/(D+1)c+1

(
n

w

)
(p− 1)w

(
1

p

)D(1−Rf )n

(D+1)

≤ n2np
n
(
δ−

D(1−Rf )

(D+1)

)
→ 0,

because δ < D(1−Rf )/(D + 1) by hypothesis.



A. Our two main results

The next lemma formally states that our Voronoi LDA con-
stellation points have a very precise typical norm or, similarly,
that our LDA shaping lattice has a “spherical” Voronoi region.

Lemma 3. Consider a non-zero syndrome s associated with
a constellation point: s = (s1, s2, . . . , sn(Rf−R), 0, . . . , 0).
Suppose that p = nλ for some λ > 0 and let 0 < ω < 1. Fix
the constant D to be D > max

{
(1−Rf )−1, 2

}
and suppose

that (2) holds true. Let ρeff denote the effective radius of the
shaping LDA lattice Λ. If x is the random LDA constellation
point whose syndrome is s and if

λ > max

{
1

D(1−Rf )− 1
,

1

2R
,

1

1−R
,

1

D − 2
,

(
1− 1

D2 − 1
− 1

D(1−R)

)−1
}
,

then

lim
n→∞

P
{
ρeff

(
1− 1

nω

)
≤ ‖x‖ ≤ ρeff

(
1 +

1

nω

)}
= 1.

Theorem 2. Suppose that 1 > Rf > R > 1
2 . Fix D >

(1−Rf )−1 and ∆P that satisfies (2). If p = nλ, with

λ > max

{
1

D(1−Rf )− 1
,

1

1−Rf
,

(
1− 1

D2 − 1
− 1

D(1−Rf )

)−1
}
,

then the random ensemble of nested LDA lattices presented
in Section IV achieves capacity of the AWGN channel under
MMSE lattice decoding, when SNR > 1.

We emphasize the fact that ∆P , D,R, and Rf are constant,
therefore the parity-check matrices associated with our LDA
lattices have constant row and column degree. For binary
LDPC codes to achieve capacity of the binary symmetric
channel, logarithmic row degrees are required [14], [17].
Surprisingly, in our LDA scenario this hypothesis can be
relaxed.

VI. CONCLUSION

We have stated the capacity-achieving properties of a par-
ticular ensemble of LDA lattices based on non-binary LDPC
lattices. Our solution is innovative because it does not require
the tools of the MLAN channel and of dithering. Furthermore,
it is based on Voronoi lattice constellations and we do not
need to introduce Gaussian coding, keeping an a priori uniform
distribution over the lattice constellation.

Also, the row and column degree of the parity-check
matrices that underlie our construction are reasonably small
constants. The Tanner graphs associated with these matrices
have some particular expansion properties that, qualitatively
speaking, say that all “small enough” sets of nodes have “big
enough” neighborhoods. These properties turn out to be one
of the most important theoretical pillars of our analysis.
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