
Generalized Low Density Codes� :Approaching the channel capacity with simpleand easily decodable block codesJ. Boutrosy, O. Pothierz, G. Z�emoryy ENST, 46 Rue Barrault, 75013 Paris, Francez LEP, 22 Avenue Descartes, 94453 Limeil-Br�evannes, Franceemail : NAME @enst.frJanuary 31, 19981 IntroductionWe build a new class of pseudo-random error correcting codes (called GLDcodes) by generalizing the Gallager's construction of low density parity checkcodes (LDPC) [1]. Each parity check equation of an LDPC code (N;K) isreplaced by the parity check matrix of a small linear code (n; k) called theconstituent code.LDPC codes are usually de�ned by their parity check matrix, but theycan also be described with a bipartite graph. The left part of the graphcontains the code symbols and the right one contains the parity check nodes.A parity check node is associated to the trivial parity check code (n; n� 1).This representation of LDPC codes has been used by Sipser and Spielman[2] to study the inuence of the graph expansion on the code parameters.The graphical representation of block codes has been �rst exploited andgeneralized by Tanner [3]. Tanner codes based on a bipartite deterministicgraph are obtained by replacing the (n; n � 1) code associated to one par-ity check node with a less trivial constituent code (n; k). Thus, building aTanner code on a random graph (instead of a deterministic one) is a secondmethod to construct GLD codes.�Submitted to IEEE-ITW 98, Killarney, Ireland.1



In the sequel, we restrict our description of GLD codes to their matrixrepresentation. As explained in the next section, the GLD class is obtainedfrom the intersection of two or more interleaved subcodes. The subcodes oflength N are a direct sum of N=n constituent codes.GLD codes seems to perform as well as Turbo codes [4] for both smalland large block lengths. It is also proved that GLD codes are asymptoticallyoptimal in the sens of the minimum distance criterion.2 Structure of the GLD codeFigure 1 shows the parity check matrix H of an LDPC code (N;K) withlength N = 12 and rate R � 1=4. The matrix H is the concatenation ofJ = 3 submatrices. The �rst submatrix H1 of size 3 � 12 de�nes a subcodeby the direct sum of three parity check codes (n; n�1) with n = 4. The wholematrix H is obtained by concatenating H1, H2 = �1(H1) and H3 = �2(H1),where �1 and �2 are two pseudo-random column permutations. This examplecan be generalized to build any LDPC code (N;K) using J�1 permutations.Gallager showed that LDPC codes are aysmptotically good when J � 3. Healso described an iterative decoding algorithm similar to turbo decoding [4]and he exploited the low density of the parity check matrix to reduce thedecoder complexity when computing the a posteriori probabilities.
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Each line of the LDPC matrix H is a parity check equation de�ned by the(n; n� 1) parity code. We replace this line by n� k lines including one copyof the parity check matrix H0 of a constituent code C0(n; k). This operationis depicted on Figure 2. The �rst submatrix produces the direct sum of N=nidentical codes C0(n; k). The matrix H has J submatrices derived by inter-leaving the columns of the �rst submatrix. This type of parity check matricesH de�nes the class of GLD codes. Thus, a GLD code C is the intersectionof J subcodes Cj, i.e. C = TJj=1 Cj where Cj+1 = �j(C1) for j = 1 : : : J � 1,and C1 = C0 � : : : � C0. If C0 has a rate r = k=n, the total rate of theGLD code is R = 1 � J(1 � r). Note that it is not possible to de�ne theGLD code as a serial (neither parallel, nor hybrid) concatenation of two ormultiple constituent codes.In our study, we considered binary GLD codes with only J = 2 levels (thetotal rate is R = 2r � 1) based on binary Hamming codes. As shown in thenext section, we need only J = 2 (i.e. one interleaver) to make the GLDcode asymptotically optimal. For practical applications, e�cient GLD codescan be built from primitive, shortened or extended binary BCH codes.H0 =�Figure 2: Structure of a GLD parity check matrix (J = 2).3 Ensemble performanceWithout loss of generality, we restrict the performance study in this sec-tion to the case of a two levels GLD code based on the binary Hammingcode C0(7; 4). We also consider a BSC channel with a transition probability0 < p < 1=2 (the study is intractable on the AWGN channel).3



Let us start by computing the average weight distribution of the ensem-ble of GLD codes built with C0(7; 4) and a random column permutation �.In other words, the weight coe�cients are obtained by averaging over theinterleaver �. The moment-generating function g(s) of C0 is given by :g(s) = 1 + 7e3s + 7e4s + e7s16The �rst subcode C1 of length N is the direct sum of N=n independent codesC0. Hence, its moment-generating function G(s) is simply a power of g(s) :G(s) = g(s)N=n = X̀Q(`)e`swhere Q(`) is the probability that a vector of weight ` belongs to C1. Sincethe total number of codewords in C1 is (2k)N=n, then the average number inC1 of coderwords of weight ` is N1(`) = 2(kN=n)Q(`). Exploiting the fact thatC1 and C2 = �(C1) are totally independent, the probablity that a vector ofweight ` belongs to C = C1TC2 can be written as :P (`) = 0BBBB@ N1(l) Ǹ !1CCCCA2Finally, the average number of codewords in C having weight ` is :N(`) =  Ǹ !� P (`) = 2(2kN=n)Q(`)2 Ǹ !By upperbounding the coe�cient Q(`) with G(s)e�`s, and by applying theStirling approximation (valid for large N), we get an upperbound on theaverage number of codewords of weight ` in the GLD code (we omit thedetails) : N(`) � C(�;N)� e�NB(�)where � = `=N is the normalized weight.The two functions C(�;N) and B(�) are expressed as follows :C(�;N) = q2�N�(1 � �) � e1=(12N�(1��))B(�) = H(�) � 2n [�(s) + k log2] + 2s�4



where H(�) is the natural entropy function and �(s) = log(g(s)). The up-perbound has been optimized and the optimal value of s is related to theweight by � = �0(s)=n.The exponent function B(�) is sketched in Figure 3. Asymptotically, whenN ! 1, the average number N(`) of codewords of weight ` goes to zero ifB(�) > 0. The �rst value of � 2]0 : : : 1=2[ corresponding to a sign transitiongives us a lower bound on the minimum distance �(C) = dmin(C)=N of theGLD code. As seen in Figure 3, � � 0:186. Thus, C is asymptotically opti-mal with dmin � 0:186N and R = 1=7 (the Gilbert-Varshamov bound gives�0 = H�12 (1�R) = 0:281).Now, let us compute the maximal value of p for which the word error prob-ability Pew of an ML decoder goes to zero when N is arbitrarily large. Anupperbound on Pew is obtained by assuming that a decoding error occurswhen at least half of the codeword non zero symbols are covered. If j de-notes the channel error weight, ` the weight of a coderword and i the numberof covered non zero bits, we have :Pew � NXj=1 pj(1 � p)N�j NX`=dminN(`) X̀i=`=2 ì ! N � `j � i !When N is large enough, an expression similar to the upperbound on N(`)can be found for Pew. After some algebraic manipulations, we get (detailsomitted) : Pew � D(N; p) � e�NE(p)where the exponent function E(p) is given by :E(p) = Minimum� "B(�) +H(p) � �log2 � (1� �)H(p � �=21 � � )#Figure 4 shows E(p) versus p. From this curve, we conclude that an MLdecoder for the GLD code achieves Pew ! 0 if p < 0:277 (not far from 0.281given by the BSC channel capacity).4 Simulation resultsTwo di�erent GLD codes have been tested over an additive white Gaussiannoise channel (AWGN). The modulation is a BPSK with symbols equal to5
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Figure 3: The exponent function B(�) versus the normalized weight �. Thelow density code is built from the (7; 4) Hamming code.
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Figure 4: The exponent function E(p) versus the BSC channel transitionprobability p. The low density code is built from the (7; 4) Hamming code.6



�p2REb, where Eb is the average energy per information bit. We used aforward-backward algorithm to decode the constituent code C0 and an it-erative procedure (similar to turbo decoding) to compute the a posterioriprobablities of the code symbols.The �rst code, suitable for mobile radio transmissions or small framesystems, has length N = 810. Its performance (BER versus the number ofdecoding iterations) is shown in Figure 5 for Eb=N0 = 1:5; 2:0 and 2:7 dB.The second code, suitable for deep space communications or image trans-missions, has length N = 65534. Figure 6 shows its BER versus the decodingiteration number. This code achieves zero error probability at 1:8dB with arate R = 0:67. Its performance is 0.6dB away from the capacity limit (1.2dBfor R = 0:67 and a BPSK input).
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Figure 6: Performance of the GLD code built from the (31; 26) Hammingcode, length N = 65534, total rate R = 0:677, on AWGN channel.References[1] R.G. Gallager: Low-density parity-check codes, MIT Press, 1963.[2] M. Sipser and D.A. Spielman: \Expander codes", 1994.[3] R.M. Tanner: \A recursive approach to low complexity codes", IEEETrans. on Information Theory, Vol. IT-27, Sept 1981.[4] C. Berrou, A. Glavieux, P. Thitimajshima : \Near Shannon limit error-correcting coding and decoding : turbo-codes," Proceedings of ICC'93,Gen�eve, pp. 1064-1070, Mai 1993.8


