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1 Introduction

We build a new class of pseudo-random error correcting codes (called GLD
codes) by generalizing the Gallager’s construction of low density parity check
codes (LDPC) [1]. Each parity check equation of an LDPC code (N, K) is
replaced by the parity check matrix of a small linear code (n, k) called the
constituent code.

LDPC codes are usually defined by their parity check matrix, but they
can also be described with a bipartite graph. The left part of the graph
contains the code symbols and the right one contains the parity check nodes.
A parity check node is associated to the trivial parity check code (n,n — 1).
This representation of LDPC codes has been used by Sipser and Spielman
[2] to study the influence of the graph expansion on the code parameters.

The graphical representation of block codes has been first exploited and
generalized by Tanner [3]. Tanner codes based on a bipartite deterministic
graph are obtained by replacing the (n,n — 1) code associated to one par-
ity check node with a less trivial constituent code (n,k). Thus, building a
Tanner code on a random graph (instead of a deterministic one) is a second
method to construct GLD codes.
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In the sequel, we restrict our description of GLD codes to their matrix
representation. As explained in the next section, the GLD class is obtained
from the intersection of two or more interleaved subcodes. The subcodes of
length NV are a direct sum of N/n constituent codes.

GLD codes seems to perform as well as Turbo codes [4] for both small
and large block lengths. It is also proved that GLD codes are asymptotically
optimal in the sens of the minimum distance criterion.

2 Structure of the GLD code

Figure 1 shows the parity check matrix H of an LDPC code (N, K') with
length N = 12 and rate R > 1/4. The matrix H is the concatenation of
J = 3 submatrices. The first submatrix H; of size 3 x 12 defines a subcode
by the direct sum of three parity check codes (n,n—1) with n = 4. The whole
matrix H is obtained by concatenating Hy, Hy = m(Hy) and Hs = mo(Hy),
where 7y and m; are two pseudo-random column permutations. This example
can be generalized to build any LDPC code (N, K') using .J —1 permutations.
Gallager showed that LDPC codes are aysmptotically good when J > 3. He
also described an iterative decoding algorithm similar to turbo decoding [4]
and he exploited the low density of the parity check matrix to reduce the
decoder complexity when computing the a posteriori probabilities.
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Figure 1: Example of an LDPC matrix with J = 3 levels.



Each line of the LDPC matrix H is a parity check equation defined by the
(n,n — 1) parity code. We replace this line by n — k lines including one copy
of the parity check matrix Hy of a constituent code Cy(n, k). This operation
is depicted on Figure 2. The first submatrix produces the direct sum of N/n
identical codes Cy(n, k). The matrix H has .J submatrices derived by inter-
leaving the columns of the first submatrix. This type of parity check matrices
H defines the class of GLD codes. Thus, a GLD code (' is the intersection
of J subcodes Cj, i.e. C = ﬂ}]:1 C; where Cj 41 = m;(Cy) for y=1...J -1,
and C; = Co @ ... & Co. If O has a rate r = k/n, the total rate of the
GLD code is R = 1 — J(1 —r). Note that it is not possible to define the
GLD code as a serial (neither parallel, nor hybrid) concatenation of two or
multiple constituent codes.

In our study, we considered binary GLD codes with only J = 2 levels (the
total rate is R = 2r — 1) based on binary Hamming codes. As shown in the
next section, we need only J = 2 (i.e. one interleaver) to make the GLD
code asymptotically optimal. For practical applications, efficient GLD codes
can be built from primitive, shortened or extended binary BCH codes.

Figure 2: Structure of a GLD parity check matrix (J = 2).

3 Ensemble performance

Without loss of generality, we restrict the performance study in this sec-
tion to the case of a two levels GLD code based on the binary Hamming
code Cy(7,4). We also consider a BSC channel with a transition probability
0 < p < 1/2 (the study is intractable on the AWGN channel).



Let us start by computing the average weight distribution of the ensem-
ble of GLD codes built with Cy(7,4) and a random column permutation .
In other words, the weight coefficients are obtained by averaging over the
interleaver . The moment-generating function g(s) of Cy is given by :
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The first subcode € of length N is the direct sum of N/n independent codes
Co. Hence, its moment-generating function G/(s) is simply a power of ¢(s) :

G(s) = g(s)V/" = %: Q(O)e"

where Q(?) is the probability that a vector of weight ¢ belongs to Cy. Since
the total number of codewords in Cy is (2¥)N/", then the average number in

O of coderwords of weight £ is Ny () = 2N/ Q(¢). Exploiting the fact that
C1 and Cy = 7(C4) are totally independent, the probablity that a vector of
weight ( belongs to €' = Cy (3 can be written as :
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Finally, the average number of codewords in €' having weight ¢ is :
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By upperbounding the coefficient Q(¢) with G(s)e=*, and by applying the
Stirling approximation (valid for large N), we get an upperbound on the

average number of codewords of weight ¢ in the GLD code (we omit the
details) :

P(l) =
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where A = /N is the normalized weight.
The two functions C'(A, N) and B(\) are expressed as follows :

C()‘v N) = 27TN)\(1 — )\) M/ (12NA(1-2))

B(X) = H()) — 2 [1(s) + k log2] + 2sA
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where H(A) is the natural entropy function and p(s) = log(g(s)). The up-
perbound has been optimized and the optimal value of s is related to the
weight by A = p/(s)/n.

The exponent function B(A) is sketched in Figure 3. Asymptotically, when
N — oo, the average number N (/) of codewords of weight ¢ goes to zero if
B(X) > 0. The first value of A €]0...1/2[ corresponding to a sign transition
gives us a lower bound on the minimum distance §(C) = d;in(C)/N of the
GLD code. As seen in Figure 3, 6 > 0.186. Thus, (' is asymptotically opti-
mal with d,i, > 0.186 N and R = 1/7 (the Gilbert-Varshamov bound gives
So = Hy'(1 — R) =0.281).

Now, let us compute the maximal value of p for which the word error prob-
ability P, of an ML decoder goes to zero when N is arbitrarily large. An
upperbound on F,, is obtained by assuming that a decoding error occurs
when at least half of the codeword non zero symbols are covered. If j de-
notes the channel error weight, ¢ the weight of a coderword and ¢ the number
of covered non zero bits, we have :
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When N is large enough, an expression similar to the upperbound on N(/)
can be found for P.,. After some algebraic manipulations, we get (details
omitted) :

P.yy < D(N,p) x e VE®)

where the exponent function F(p) is given by :

p—A/2

E(p) = Minimum, |B(X)+ H(p) — Mog2 — (1 — \)H( T )

Figure 4 shows F(p) versus p. From this curve, we conclude that an ML
decoder for the GLD code achieves P.,, — 0 if p < 0.277 (not far from 0.281
given by the BSC channel capacity).

4  Simulation results

Two different GLD codes have been tested over an additive white Gaussian

noise channel (AWGN). The modulation is a BPSK with symbols equal to
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Figure 3: The exponent function B(A) versus the normalized weight A. The
low density code is built from the (7,4) Hamming code.
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Figure 4: The exponent function E(p) versus the BSC channel transition
probability p. The low density code is built from the (7,4) Hamming code.



+v2RE), where Ej is the average energy per information bit. We used a
forward-backward algorithm to decode the constituent code Cjy and an it-
erative procedure (similar to turbo decoding) to compute the a posteriori
probablities of the code symbols.

The first code, suitable for mobile radio transmissions or small frame
systems, has length N = 810. Its performance (BER versus the number of
decoding iterations) is shown in Figure 5 for E,/Ny = 1.5, 2.0 and 2.7 dB.

The second code, suitable for deep space communications or image trans-
missions, has length N = 65534. Figure 6 shows its BER versus the decoding
iteration number. This code achieves zero error probability at 1.8dB with a
rate R = 0.67. Its performance is 0.6dB away from the capacity limit (1.2dB
for R = 0.67 and a BPSK input).
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Figure 5: Performance of the GLD code built from the (15,11) Hamming
code, length N = 810, total rate R = 0.466, on AWGN channel.
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Figure 6: Performance of the GLD code built from the (31,26) Hamming
code, length N = 65534, total rate R = 0.677, on AWGN channel.
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