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Abstract— A new graph-based construction of generalized low do not claim that GLD codes may compete with Turbo/LDPC
density codes (GLD-Tanner) with binary BCH constituents is codes which are very well understood and implemented by

described. The proposed family of GLD codes is optimal on blck engineers. Our study of full-diversity GLD codes is motiat
erasure channels and quasi-optimal on block fading channsl

Optin_1a|ity is considered in_ the outage probability sense. A by
classical GLD code for ergodic channels (e.g., the ANGN chael, « The GLD family constitue a bridge between the classical

the i.i.d. Rayleigh fading channel, and the i.i.d. binary easure
channel) is built by connecting bitnodes and subcode nodesava
unique random edge permutation. In the proposed constructin
of full-diversity GLD codes (referred to as root GLD), bitnodes
are divided into 4 classes, subcodes are divided into 2 class and

algebraic coding theory and the modern theory of error-
correcting codes based on graphs and iterative algorithms.
GLD codes are asymptotically good, with smaller bitnode
degrees when compared to LDPC .

finally both sides of the Tanner graph are linked via 4 random
edge permutations. The study focuses on non-ergodic charlee
with two states and can be easily extended to channels with 3
states or more.

o Minimum Hamming distance: the Gilbert-Varshamov
bound is attained for different GLD families (see Fig.
3in [3], [6]).

o ML decoding: BSC channel capacity attained for different

GLD families (see Fig. 4 in [3]).

Direct generalization of LDPC codes, replace the SPC

nodes by BCH nodes.

« Direct generalization of product codes, replace the com-

plete graph by a low density graph.

Perform as well as Turbo and LDPC codes on non-

ergodic fading channels! see the word error rate perfor-

mance in the last section of this paper.

I. INTRODUCTION

Many researchers would admit that the problem of building *
powerful error-correcting codes has been in some sensedolv
The adjective “powerful” refers to the capability of the cime|
code to achieve near Shannon capacity error rate perforeanc
Indeed, most of those powerful codes have been constructed
and analyzed in roughly one decade, between 1993 and
2004, including turbo codes, low-density parity-check end ] ]
(LDPC), raptor codes, multi-edge type codes, etc. The constituent of a GLD code can be any linear block code.

Nevertheless, research on analyzing and understanding B to its flexibility in terms of rate and length, the BCH
behavior of powerful graph codes on less classical chann&#ily is the best suited for defining subcode nodes in a GLD
is still under progress. What about non-ergodic channetls wcode- Even more advantages can be listed:
null Shannon capacity like block fading channels and block s The GLD coding rate? is flexible (independent from the
erasure channels encountered in wireless data transmsssio code length),R = 2r — 1 for a rater BCH constituent
such as wifi and wimax ? The most powerful classically built  when all bitnodes have degree 2. The code lengfh is
graph codes show a poor performance in presence of non- Ln, whereL is a degree of freedom (compareid= n?
ergodicity, they even fail to achieve the first necessarggan in product codes).
which is capturing the maximum diversity order embedded in « Asymptotic analysis of GLD codes is possiblg, —
the transmission channel. +o0o while R is fixed. This analysis can be made using

In this paper, we propose to design generalized low-density standard tools such as Density Evolution (DE).

(GLD) codes for non-ergodic erasure and fading channels.e Density evolution is not as standard as usually expected
GLD codes are Tanner structures [1] with random permuta- when dealing with full-diversity root-GLD codes. The
tions. The reader can find a detailed description of GLD codes latter are multi-edge type graph codes. Different types of
in [2][3][4][5]. We are aware that practical applicationach messages will be propagating in the code (4 pdfs when
standards are mainly selecting Turbo or LDPC codes for chan- n. = 2 channel states).

nel coding. The aim of this paper is essentialy theoretizal, « Irregularity can be introduced via(z) in order to im-



prove the ergodic decoding threshold and to insure anlll. GENERALIZED LOW DENSITY CODES WITH BINARY
overall rate as close as possiblelt®. BCH CONSTITUENTS

o We will design GLD codes with 1rst order rootchecks The simplest way to introduce a GLD code is to modify
only, no need for high order rootchecks, i.e., root-GLhe constraints in a Gallager LDPC code [10][11]. Indeed,
codes attain full diversity after one decoding iteration! {,e bipartite graph representation is identical, the sing
Due to the lack of space in this extended abstract, vparity checknodes in an LDPC code are replaced by BCH
dot not describe the properties of block-fading channele Tchecknodes. The structure of the GLD parity-check matrix ca
reader can refer to [7] and references cited therein for mobe derived from the graph representation [2][4]. A differen
information. For the same reasons, proofs of propositiomgy for defining GLD codes is to modify the complete graph
stated in this paper are not given. A brief description of thef a product code. Replacing the product code graph by a
channel model is given in the next section. low-density pseudo-random graph yields a GLD code. Fipally
a third equivalent method is to define a GLD code as the
intersection of interleaved block codes [3]. In presence of
uasi-static fading (non-ergodic channels), the inforamat
heoretical limit is given by the outage probability [123]1

Wo necessary conditions must be satisfied in order to design
a near-outage achieving GLD code [14][7]:

1) In the fading plane [14], the outage boundary curve of

II. CHANNEL MODEL

Linear binary coding for non-ergodic channels is consi
ered. The channel state is assumed to be invariant for so
time period, finite or infinite. Given the channel statg an
inputz = £1 and an outpuy = ax+n, the channel transition

probabilty is the code must be as close as possible to the capacity
ly — ax|? outage curve on the ergodic liney( = a2). Hence,
p(ylz, o) o exp | — 252 ) (1) the GLD code must exhibit a low decoding threshold

on ergodic channels (this is referred to as a capacity-
achieving code in coding theory). Hence, we briefly
describe in this section how to improve the ergodic
decoding threshold with respect to regular GLD codes

whereo? is the variance of the additive white Gaussian noise
7. Two cases are considered:

1) The non-ergodic Rayleigh fading channel where the

fading coefficienta: belongs toR™, with probability
density function2ae—". We should emphasize that 2)
maximal diversity is still achieved by root GLD in
presence of other types of fading distribution, as in
coding for MIMO channels where a channel state is
assigned a high order Nakagami distribution.

2) The block erasure channel where the fading coefficient

as originally proposed in the cited literature.

In the fading plane, the outage boundary curve of the
code must be as close as possible to the capacity
outage curve along both fading axes. This condition is
equivalent to designing a full-diversity code in presence
of block erasureso; = 0 and a» +o00, and vice
versa). The construction of a full-diversity code is given

in the next section.

Let us consider a GLD code with an irregular bitnode degree
distribution defined by a sequende\;}. For simplicty, the
subcode nodes are all identical (the GLD is right regulaeX L

d denote the highest bitnode degree. Recall that all subcode
nodes have degree. The degree distribution satisfies the
following constraints:

a belongs t0{0, +o00}.

codeword of length N bits

d/\i

2.5
=1

wherer = k/n and R = K/N. It is assumed that the graph
Within a codeword of lengthV bits, it is assumed that constraints are all independent. If the degree distrilbbuto
takesn. independent values. Also, the fading instances arestriced to{1,2,d}, then the overall GLD rate is
supposed to be independent from one codeword to another. 2(1 — 1)
For simplicity, we consider the case. = 2 channel states 5>
per codeword, as illustrated in Figute Code construction L+ A= (1= 3Xd)
and analysis is generally straightforward for > 3. Channel Improving the ergodic threshold of GLD codes
coding is made via a rat® GLD codeC[N, K]. The codeC' Instead of restricting the GLD structure tg, = 1, a slight
is built from a rater constitueniCy[n, k], also referred to as a improvement in the decoding threshold can be obtained by
subcode of the GLD code. In our practical examples, we argroducing A\; and \;, whered > 3. Despite the small
mainly focusing on subcodes defined from the famous familjprovement on an ergodic Gaussian channel, the move on the
of linear binary BCH codes [8][9]. The next section brieflyergodic line is sufficient to produce near-outage perforcean
describes the structure of a GLD code. as shown in the last section. The fractidnis also useful to

1—r
1-R’

)

d
0<A <L, Y =1,
=1

Fig. 1. Data transmission channel with 2 states.

R=1-

d>3. ©)



increase the coding rate up tg2 (the highest rate according  IV. FuLL-DIVERSITY GLD CODES BASED ON ROOT
to the block-fading Singleton bound). The number of bitreode SUBCODES

of degree 1 should be limited within a subcode node as stateqb\ rootcheck is a special type of checknode suitable for

below. . ] ) designing codes on graphs matched to iterative decoding whe
Proposition 1: Let C'[N, K] be a GLD code built from a ansmitted over block-fading and block-erasure channels

cc_)ns_tltu.entCO[n, k, dimin] with an irregular bitnode degree Definition 3: A rootcheck is a subcode node with all roots

distribution. Let A, be the fraction of edges connected Qe in white and all leaves colored in red. A similar

mono-edge bitnodes. Letbe the maximum number of mono-yefinition is given after interchanging red and white.
edge bitnodes connected to a subcode node. In order to avoid

error-floors under iterative decoding, must satisfy

% % Up to n — k root vertices on state 1
<n-—k. .
:ugdmin_Q (4) S

®: BCH constituent Cy[n, k]

d
Hence, the fraction\; is upper bounded as follows Zk._
doin — 2 5) ryyy All leaves undergo state 2

A< B fmin 72 (

The ratio of \; to its ma{ibmal valz}e is Fig. 2.  Structure of a rootcheck for a 2-state channel. Abtrbits are

transmitted on fading 1 and all leaves on fading 2. A dualagloetk is defined
by interchanging the two fading numbers.

(6)
The definition of a rootcheck is illustrated by Figug
We also define the polynomialx) (not including);) for use The version of the constituerdt, defined by a parity-check

in density evolution [11], matrix Hy and used in a rootcheck must satisfy the following
constraint:
s Azt The n — k root vertices are assigned to— k independent
M) = W () columns ofH,. The simplest convention is to write the parity-

check matrix in systematic forn#/y = [I,,—, | Po], and assign

Let f™(x) denote the probability density function of log-the firstn — k& columns to root bitnodes. As shown in FIg.if
ratio messages propagating from bitnodes to subcode noffR@! bits are erased then one can recompute their value from
at iterationm. The standard convolution is denoteddy The leaf bits usingH.
BCH probabilistic decoder is denoted iy The subscripto Proposition 4: A rootcheckCo[n, k, d] guarantees full di-
represents the number of inputs. For example, the notatig@rsity to all its roots under both block erasures and block
@ [f™(x)®"1] represents the probability density function ofadings.
extrinsic log-ratio messages at the BCH decoder output whelging the rootcheck as a building block, the Tanner graph of
the densityf™ (z) is applied at its:— 1 inputs. Letu(z) be the a full-diversity GLD code can be derived directly from the
gaussian density at the output of the AWGN channel withotgpresentation of product codes or that of LDPC codes. Both
fading (v; = a2 = 1). The following proposition establishesprodecures lead to the same bipartite Tanner graph (details
the expression of density evolution for GLD codes on AWGNmitted) depicted in Fig3.
memoryless channels (without fading) with BPSK input.

Proposition 2: The density of log-ratio messages propagat- R
ing from bitnodes to subcode nodes for an irregular GLD code
satisfies

w2

m—+1 N
f (z) = /L(l‘) @A (q)[uv U]) (8) (1- R)% n
with u = f™(z)®"~#~! and
o= () + (1= A) (@) " 1 RX
2 N
where f9(z) = p(x) and A is given by ). !
Consider the GLD code built from¥y[15, 11, 3]. When X, =
1, the overall rate isR = 0.46666 and the ergodic threshold RY
is Ep/No(min) = 0.84dB on AWGN channel with BPSK
input. The irregular version based @fy[15,11, 3] with \; = -
Fig. 3. Tanner graph of a full-diversity regular GLD codedtdLD) to be
0.660000, A; = 0.912122, and Ay = 0.021878 have R = yansmitted on a 2-state non-ergodic fading channel, Raté 1/2 and length

0.4945 and E;, /Ny (min) = 0.73dB. N.



Bitnodes are divided into 4 classes. Nodes 1i are informati®Jsing the same notation for log-ratio messages as in section
bits transmitted on state 1, nodes 2i are information biis of [7], let us define the density mixtures
transmitted on state 2. All information bits are protected b

rootchecks (rootchecks 1c for bits 1i and rootchecks 2c for pa(r) = ferpn () + geapia(v) (12)
bits 2i). Parity bits are denoted 1p and 2p. Diversity is not p21(z) = feop2(x) + geaptr (2) (13)
guaranteed on parity bits because they are not rootbits. The qi12(z) = ferq1(x) + geaqa(x) (14)
reader can easily check on Fi§. how bitnodes 1i can be g21(2) = ferqo(2) + geaqi (@) (15)

determined in 1 iteration if all white bits are erased (iexgse

both 1i and 1p). Numbers on the left and on the right representNOW, the final proposition can be stated.

the cardinality of each node family. For example, the roobGL Proposition 5: At iteration m + 1, for a fixed fading pair
has RN/2 bits of type 1i and(1 — R)N/2 bits of type 2i. (a1, a2), density evolution equations of a root GLD code on
The code has als&//n subcode nodes for types 1c and 2@ block-fading channel are

The parity-check matrix o€ can be directly derived from its m+1 _ 3

Tanner graph. An example is shown in Figfor R = 1/2. @) = (@) ®on@) ©Men(w)

g (@) = p(z) © Mg (2))
Hy = [| ‘ rl P } l% where \(z) = A(z)/z. The extrinsic densitieg; () (from
1c to 1i) and¢o; (x) (from 2c to 1i) are given by (x) =
f % 3 Dy g pu[u, v, w] with
Rt 1p 2 w u [fer f(2) + gergz ()]
" 1 1 P]Px o P,Z T p, o= [qua(x) o
R o B B T w o= [ipe(@) + (1= A)giz ()]
l l Py P .
= |_____ Yoo ____ Lo oo and ¢o; () = Plu, v, w] with
P | P, L |
N/2 x N lf’l I 2 "‘P-z‘ | I u = [felfl (.T) + Je1q1 (.I')]Gk_l
PP ! I ! 0 2¢ onek—p
P! ~p! ! v [q21 ()] !
- - w o= Mg (@) + (1= A1)gar (2)]"
Fig. 4. Parity-check matrix for a regular root GLB,= 3/4 andR = 1/2.  Similar equations are obtained by permuting the two fading
Column permutations are not shown. numbers. The index is omitted fromg,; andgs; to simplify

_ the expressions.
In contrast to classical fully random GLD codes, a root GLD

is built via 4 random edge permutationis, < 2¢, 1p < 2¢, V. NUMERICAL RESULTS

2p « le, and 2i < 1lc. Therefore, root GLD codes are The word error rate performance versus signal-to-noise rat
generalized multi-edge type low-density codes [15] sufted per bit is plotted in Fig5 for a GLD code based ofiy[15, 11],
iterative decoding over block-fading channels. Irregalegree  with degree distributior{ \;} given at the end of sectiofil
distribution {\;} can be easily embedded in the Tanner grapte., Ay = 0.66 and R = 0.4945. For the same degree

of a root GLD. In order to maintain full diversity, mono-edgedistribution, the performance of random and root GLD codes
bitnodes connected to 1c belong to 1i and 2p only. Similarlig determined via density evolution as given in proposition
mono-edge bitnodes connected to 2c checks belong to 2i sl expected, a random Tanner graph cannot guarantee the
1p. Bitnodes of degree 2 and more can be spread over théult diversity order (diversity is 1), its error rate decsss as
classes without any restriction (except for perfect symmnetl/(E,/Ny). The root structure based on rootchecks has an
that must be satisfied when interchanging fading numbersetror rate decreasing as/(E,/No)? (diversity is 2) with a

and 2). performance relatively close to the outage limit (high cadi
The final proposition stated below establishes the densggin).
evolution of a full-diversity root GLD code on a 2-state btec

fading channel. Let us define the following sums, REFERENCES
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