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Abstract— A new graph-based construction of generalized low
density codes (GLD-Tanner) with binary BCH constituents is
described. The proposed family of GLD codes is optimal on block
erasure channels and quasi-optimal on block fading channels.
Optimality is considered in the outage probability sense. A
classical GLD code for ergodic channels (e.g., the AWGN channel,
the i.i.d. Rayleigh fading channel, and the i.i.d. binary erasure
channel) is built by connecting bitnodes and subcode nodes via a
unique random edge permutation. In the proposed construction
of full-diversity GLD codes (referred to as root GLD), bitnodes
are divided into 4 classes, subcodes are divided into 2 classes, and
finally both sides of the Tanner graph are linked via 4 random
edge permutations. The study focuses on non-ergodic channels
with two states and can be easily extended to channels with 3
states or more.

I. I NTRODUCTION

Many researchers would admit that the problem of building
powerful error-correcting codes has been in some sense solved.
The adjective “powerful” refers to the capability of the channel
code to achieve near Shannon capacity error rate performance.
Indeed, most of those powerful codes have been constructed
and analyzed in roughly one decade, between 1993 and
2004, including turbo codes, low-density parity-check codes
(LDPC), raptor codes, multi-edge type codes, etc.

Nevertheless, research on analyzing and understanding the
behavior of powerful graph codes on less classical channels
is still under progress. What about non-ergodic channels with
null Shannon capacity like block fading channels and block
erasure channels encountered in wireless data transmissions
such as wifi and wimax ? The most powerful classically built
graph codes show a poor performance in presence of non-
ergodicity, they even fail to achieve the first necessary criterion
which is capturing the maximum diversity order embedded in
the transmission channel.

In this paper, we propose to design generalized low-density
(GLD) codes for non-ergodic erasure and fading channels.
GLD codes are Tanner structures [1] with random permuta-
tions. The reader can find a detailed description of GLD codes
in [2][3][4][5]. We are aware that practical applications and
standards are mainly selecting Turbo or LDPC codes for chan-
nel coding. The aim of this paper is essentialy theoretical,we

do not claim that GLD codes may compete with Turbo/LDPC
codes which are very well understood and implemented by
engineers. Our study of full-diversity GLD codes is motivated
by

• The GLD family constitue a bridge between the classical
algebraic coding theory and the modern theory of error-
correcting codes based on graphs and iterative algorithms.

• GLD codes are asymptotically good, with smaller bitnode
degrees when compared to LDPC .

• Minimum Hamming distance: the Gilbert-Varshamov
bound is attained for different GLD families (see Fig.
3 in [3], [6]).

• ML decoding: BSC channel capacity attained for different
GLD families (see Fig. 4 in [3]).

• Direct generalization of LDPC codes, replace the SPC
nodes by BCH nodes.

• Direct generalization of product codes, replace the com-
plete graph by a low density graph.

• Perform as well as Turbo and LDPC codes on non-
ergodic fading channels! see the word error rate perfor-
mance in the last section of this paper.

The constituent of a GLD code can be any linear block code.
Due to its flexibility in terms of rate and length, the BCH
family is the best suited for defining subcode nodes in a GLD
code. Even more advantages can be listed:

• The GLD coding rateR is flexible (independent from the
code length),R = 2r − 1 for a rate-r BCH constituent
when all bitnodes have degree 2. The code length isN =
Ln, whereL is a degree of freedom (compare toN = n2

in product codes).
• Asymptotic analysis of GLD codes is possible,L →

+∞ while R is fixed. This analysis can be made using
standard tools such as Density Evolution (DE).

• Density evolution is not as standard as usually expected
when dealing with full-diversity root-GLD codes. The
latter are multi-edge type graph codes. Different types of
messages will be propagating in the code (4 pdfs when
nc = 2 channel states).

• Irregularity can be introduced viaλ(x) in order to im-



prove the ergodic decoding threshold and to insure an
overall rate as close as possible to1/2.

• We will design GLD codes with 1rst order rootchecks
only, no need for high order rootchecks, i.e., root-GLD
codes attain full diversity after one decoding iteration!

Due to the lack of space in this extended abstract, we
dot not describe the properties of block-fading channels. The
reader can refer to [7] and references cited therein for more
information. For the same reasons, proofs of propositions
stated in this paper are not given. A brief description of the
channel model is given in the next section.

II. CHANNEL MODEL

Linear binary coding for non-ergodic channels is consid-
ered. The channel state is assumed to be invariant for some
time period, finite or infinite. Given the channel stateα, an
inputx = ±1 and an outputy = αx+η, the channel transition
probability is

p(y|x, α) ∝ exp

(

−
|y − αx|2

2σ2

)

, (1)

whereσ2 is the variance of the additive white Gaussian noise
η. Two cases are considered:

1) The non-ergodic Rayleigh fading channel where the
fading coefficientα belongs toR

+, with probability
density function2αe−α2

. We should emphasize that
maximal diversity is still achieved by root GLD in
presence of other types of fading distribution, as in
coding for MIMO channels where a channel state is
assigned a high order Nakagami distribution.

2) The block erasure channel where the fading coefficient
α belongs to{0, +∞}.

α1 α2

N

2
N

2

codeword of length N bits

α1 α1 α2 α2

Fig. 1. Data transmission channel with 2 states.

Within a codeword of lengthN bits, it is assumed thatα
takesnc independent values. Also, the fading instances are
supposed to be independent from one codeword to another.
For simplicity, we consider the casenc = 2 channel states
per codeword, as illustrated in Figure1. Code construction
and analysis is generally straightforward fornc ≥ 3. Channel
coding is made via a rate-R GLD codeC[N, K]. The codeC
is built from a rate-r constituentC0[n, k], also referred to as a
subcode of the GLD code. In our practical examples, we are
mainly focusing on subcodes defined from the famous family
of linear binary BCH codes [8][9]. The next section briefly
describes the structure of a GLD code.

III. GENERALIZED LOW DENSITY CODES WITH BINARY

BCH CONSTITUENTS

The simplest way to introduce a GLD code is to modify
the constraints in a Gallager LDPC code [10][11]. Indeed,
the bipartite graph representation is identical, the single-
parity checknodes in an LDPC code are replaced by BCH
checknodes. The structure of the GLD parity-check matrix can
be derived from the graph representation [2][4]. A different
way for defining GLD codes is to modify the complete graph
of a product code. Replacing the product code graph by a
low-density pseudo-random graph yields a GLD code. Finally,
a third equivalent method is to define a GLD code as the
intersection of interleaved block codes [3]. In presence of
quasi-static fading (non-ergodic channels), the information
theoretical limit is given by the outage probability [12][13].
Two necessary conditions must be satisfied in order to design
a near-outage achieving GLD code [14][7]:

1) In the fading plane [14], the outage boundary curve of
the code must be as close as possible to the capacity
outage curve on the ergodic line (α1 = α2). Hence,
the GLD code must exhibit a low decoding threshold
on ergodic channels (this is referred to as a capacity-
achieving code in coding theory). Hence, we briefly
describe in this section how to improve the ergodic
decoding threshold with respect to regular GLD codes
as originally proposed in the cited literature.

2) In the fading plane, the outage boundary curve of the
code must be as close as possible to the capacity
outage curve along both fading axes. This condition is
equivalent to designing a full-diversity code in presence
of block erasures (α1 = 0 and α2 = +∞, and vice
versa). The construction of a full-diversity code is given
in the next section.

Let us consider a GLD code with an irregular bitnode degree
distribution defined by a sequence{λi}. For simplicty, the
subcode nodes are all identical (the GLD is right regular). Let
d denote the highest bitnode degree. Recall that all subcode
nodes have degreen. The degree distribution satisfies the
following constraints:

0 ≤ λi ≤ 1,

d
∑

i=1

λi = 1,

d
∑

i=1

λi

i
=

1 − r

1 − R
, (2)

wherer = k/n andR = K/N . It is assumed that the graph
constraints are all independent. If the degree distribution is
restriced to{1, 2, d}, then the overall GLD rate is

R = 1 −
2(1 − r)

1 + λ1 − (1 − 2

d
λd)

, d ≥ 3. (3)

Improving the ergodic threshold of GLD codes.
Instead of restricting the GLD structure toλ2 = 1, a slight
improvement in the decoding threshold can be obtained by
introducing λ1 and λd, where d ≥ 3. Despite the small
improvement on an ergodic Gaussian channel, the move on the
ergodic line is sufficient to produce near-outage performance
as shown in the last section. The fractionλ1 is also useful to
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increase the coding rate up to1/2 (the highest rate according
to the block-fading Singleton bound). The number of bitnodes
of degree 1 should be limited within a subcode node as stated
below.

Proposition 1: Let C[N, K] be a GLD code built from a
constituentC0[n, k, dmin] with an irregular bitnode degree
distribution. Let λ1 be the fraction of edges connected to
mono-edge bitnodes. Letµ be the maximum number of mono-
edge bitnodes connected to a subcode node. In order to avoid
error-floors under iterative decoding,µ must satisfy

µ ≤ dmin − 2 (4)

Hence, the fractionλ1 is upper bounded as follows

λ1 ≤
µ

n
≤

dmin − 2

n
(5)

The ratio ofλ1 to its maximal value is

λ11 =
λ1

(µ/n)
(6)

We also define the polynomialλ(x) (not includingλ1) for use
in density evolution [11],

λ(x) =

∑

i≥2
λix

i−1

∑

i≥2
λi

(7)

Let fm(x) denote the probability density function of log-
ratio messages propagating from bitnodes to subcode nodes
at iterationm. The standard convolution is denoted by⊗. The
BCH probabilistic decoder is denoted byΦ. The subscript⊙
represents the number of inputs. For example, the notation
Φ

[

fm(x)⊙n−1
]

represents the probability density function of
extrinsic log-ratio messages at the BCH decoder output when
the densityfm(x) is applied at itsn−1 inputs. Letµ(x) be the
gaussian density at the output of the AWGN channel without
fading (α1 = α2 = 1). The following proposition establishes
the expression of density evolution for GLD codes on AWGN
memoryless channels (without fading) with BPSK input.

Proposition 2: The density of log-ratio messages propagat-
ing from bitnodes to subcode nodes for an irregular GLD code
satisfies

fm+1(x) = µ(x) ⊗ λ (Φ[u, v]) (8)

with u = fm(x)⊙n−µ−1 and

v = (λ11µ(x) + (1 − λ11)f
m(x))

⊙µ

wheref0(x) = µ(x) andλ11 is given by (6).
Consider the GLD code built fromC0[15, 11, 3]. Whenλ2 =
1, the overall rate isR = 0.46666 and the ergodic threshold
is Eb/N0(min) = 0.84dB on AWGN channel with BPSK
input. The irregular version based onC0[15, 11, 3] with λ1 =
0.660000, λ2 = 0.912122, and λ4 = 0.021878 have R =
0.4945 andEb/N0(min) = 0.73dB.

IV. FULL -DIVERSITY GLD CODES BASED ON ROOT

SUBCODES

A rootcheck is a special type of checknode suitable for
designing codes on graphs matched to iterative decoding when
transmitted over block-fading and block-erasure channels.

Definition 3: A rootcheck is a subcode node with all roots
colored in white and all leaves colored in red. A similar
definition is given after interchanging red and white.

�
�
�
�
�
�
�
�

Φ

Up to n − k root vertices on state 1

Φ: BCH constituent C0[n, k]

All leaves undergo state 2

6 n − k

> k

Fig. 2. Structure of a rootcheck for a 2-state channel. All root bits are
transmitted on fading 1 and all leaves on fading 2. A dual rootcheck is defined
by interchanging the two fading numbers.

The definition of a rootcheck is illustrated by Figure2.
The version of the constituentC0 defined by a parity-check
matrix H0 and used in a rootcheck must satisfy the following
constraint:
The n − k root vertices are assigned ton − k independent
columns ofH0. The simplest convention is to write the parity-
check matrix in systematic form,H0 = [In−k | P0], and assign
the firstn−k columns to root bitnodes. As shown in Fig.2, if
root bits are erased then one can recompute their value from
leaf bits usingH0.

Proposition 4: A rootcheckC0[n, k, d] guarantees full di-
versity to all its roots under both block erasures and block
fadings.
Using the rootcheck as a building block, the Tanner graph of
a full-diversity GLD code can be derived directly from the
representation of product codes or that of LDPC codes. Both
prodecures lead to the same bipartite Tanner graph (details
omitted) depicted in Fig.3.
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Fig. 3. Tanner graph of a full-diversity regular GLD code (root GLD) to be
transmitted on a 2-state non-ergodic fading channel, rateR ≤ 1/2 and length
N .
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Bitnodes are divided into 4 classes. Nodes 1i are information
bits transmitted on state 1, nodes 2i are information bits
transmitted on state 2. All information bits are protected by
rootchecks (rootchecks 1c for bits 1i and rootchecks 2c for
bits 2i). Parity bits are denoted 1p and 2p. Diversity is not
guaranteed on parity bits because they are not rootbits. The
reader can easily check on Fig.3 how bitnodes 1i can be
determined in 1 iteration if all white bits are erased (i.e.,erase
both 1i and 1p). Numbers on the left and on the right represent
the cardinality of each node family. For example, the root GLD
hasRN/2 bits of type 1i and(1 − R)N/2 bits of type 2i.
The code has alsoN/n subcode nodes for types 1c and 2c.
The parity-check matrix ofC can be directly derived from its
Tanner graph. An example is shown in Fig.4 for R = 1/2.
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n
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4
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n
2

H0 =

P2

P2

P2

P2

P1

H =

N/2 × N

Fig. 4. Parity-check matrix for a regular root GLD,r = 3/4 andR = 1/2.
Column permutations are not shown.

In contrast to classical fully random GLD codes, a root GLD
is built via 4 random edge permutations,1i ↔ 2c, 1p ↔ 2c,
2p ↔ 1c, and 2i ↔ 1c. Therefore, root GLD codes are
generalized multi-edge type low-density codes [15] suitedfor
iterative decoding over block-fading channels. Irregulardegree
distribution{λi} can be easily embedded in the Tanner graph
of a root GLD. In order to maintain full diversity, mono-edge
bitnodes connected to 1c belong to 1i and 2p only. Similarly,
mono-edge bitnodes connected to 2c checks belong to 2i and
1p. Bitnodes of degree 2 and more can be spread over the 4
classes without any restriction (except for perfect symmetry
that must be satisfied when interchanging fading numbers 1
and 2).
The final proposition stated below establishes the density
evolution of a full-diversity root GLD code on a 2-state block-
fading channel. Let us define the following sums,

S1 =
∑

i≥2

λi

i
S2 =

∑

i≥2

λi

i − 1
S3 =

∑

i≥1

λi

i
, (9)

and the following multi-edge fractions

fe1 = 1 − ge1 =
RS1

(1 − R)S2 + RS1

(10)

fe2 = 1 − ge2 =
R

R + (1 − R)/S3 − 2r + R/S2

(11)

Using the same notation for log-ratio messages as in section
V of [7], let us define the density mixtures

µ12(x) = fe2µ1(x) + ge2µ2(x) (12)

µ21(x) = fe2µ2(x) + ge2µ1(x) (13)

q12(x) = fe2q1(x) + ge2q2(x) (14)

q21(x) = fe2q2(x) + ge2q1(x) (15)

Now, the final proposition can be stated.
Proposition 5: At iteration m + 1, for a fixed fading pair

(α1, α2), density evolution equations of a root GLD code on
a block-fading channel are

fm+1
1 (x) = µ1(x) ⊗ φ11(x) ⊗ λ̃(φ21(x))

qm+1

1 (x) = µ1(x) ⊗ λ(φ21(x))

where λ̃(x) = λ(x)/x. The extrinsic densitiesφ11(x) (from
1c to 1i) andφ21(x) (from 2c to 1i) are given byφ11(x) =
Φn−k−µ[u, v, w] with

u = [fe1f2(x) + ge1q2(x)]⊙k

v = [q12(x)]⊙n−k−µ−1

w = [λ11µ12(x) + (1 − λ11)q12(x)]⊙µ

andφ21(x) = Φk[u, v, w] with

u = [fe1f1(x) + ge1q1(x)]⊙k−1

v = [q21(x)]⊙n−k−µ

w = [λ11µ21(x) + (1 − λ11)q21(x)]⊙µ

Similar equations are obtained by permuting the two fading
numbers. The indexm is omitted fromφ11 andφ21 to simplify
the expressions.

V. NUMERICAL RESULTS

The word error rate performance versus signal-to-noise ratio
per bit is plotted in Fig.5 for a GLD code based onC0[15, 11],
with degree distribution{λi} given at the end of sectionIII ,
i.e., λ1 = 0.66 and R = 0.4945. For the same degree
distribution, the performance of random and root GLD codes
is determined via density evolution as given in proposition5.
As expected, a random Tanner graph cannot guarantee the
full diversity order (diversity is 1), its error rate decreases as
1/(Eb/N0). The root structure based on rootchecks has an
error rate decreasing as1/(Eb/N0)

2 (diversity is 2) with a
performance relatively close to the outage limit (high coding
gain).
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[14] J.J. Boutros, A. Guillén i Fàbregas, and E. CalvaneseStrinati, “Analysis
of coding on non-ergodic channels,”Allerton’s Conference, Monticello,
Illinois, Sept 2005.Click to download.

[15] T. J. Richardson and R. L. Urbanke, “Multi-edge type LDPC codes,”
IEEE Trans. on Inf. Theory, to appear.Click to download.

5

http://arxiv.org/pdf/0710.1182
http://www.josephboutros.org/coding/allerton05nonergodic.pdf
http://lthcwww.epfl.ch/papers/multiedge.ps

	Introduction 
	Channel model 
	Generalized low density codes with binary BCH constituents 
	Full-Diversity GLD Codes based on root subcodes
	Numerical results
	References

