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Abstract—We investigate the joint source-channel estima-
tion and decoding problem. We consider a non-uniform bi-
nary source transmitted over a binary-input output-symmetric
channel, namely the BEC, BSC and AWGN channels. The
source sequence is encoded via systematic and non-systematic
low-density parity-check codes. The proposed joint source-
channel iterative estimation technique relies on the Expectation
Maximization (EM) algorithm that will be associated to the
message passing LDPC decoding for both systematic and
non systematic codes. Simulation results confirm the strong
improvement in performance over the case in which source
a priori information is not considered. Furthermore, within
this proposed joint source-channel iterative estimation via
Expectation Maximization no loss in error-rate performance
is observed with respect to the perfect knowledge case.

I. INTRODUCTION

Since the invention of low-density parity-check codes [5]
(LDPC), recent developments of codes defined on graphs [7]
considered the design and optimization of error-correcting
codes for uniformly distributed sources. The unique ex-
ception appears in Mackay-Neal (MN) codes in [8] that
describes the scrambling of low-density generator-matrix
codewords and the use of source a priori probability in
MN decoding. More recently, following the study of parallel
turbo codes for non-uniform binary sources [11], a special
class of non-systematic LDPC codes has been proposed for
non-uniform i.i.d binary sources [10][1].

The full utilization of systematic and non-systematic LDPC
codes for channel coding of non-uniform sources requires: 1-
The knowledge of the source probability distribution, and 2-
The knowledge of channel parameters, at the decoder side. In
this paper, we show that both source state information (SSI)
and channel state information (CSI) can be jointly estimated
by the iterative decoder via Expectation-Maximization (EM)
[3]1[9] with no loss in error rate performance, and at the
expense of a negligible complexity.

The paper is organized as follows: we define the system
model and the associated notations in Section II. In Section
111, we briefly recall the statement of EM algorithm as a
recursive low complexity approach to ML estimation. We
then show in sections IV and V how EM can be integrated
into the decoding of systematic and non systematic LDPC
codes for both binary symmetric channel with erasures and
additive white gaussian noise channel.

Il. SYSTEM MODEL AND NOTATIONS

Let us consider a non-uniform binary independent iden-
tically distributed source. The source generates a binary
sequence of length & denoted by s £ (s1, 52, ..., s,,) where
s; € {0,1}. We assume that the source sequence is directly
fed to a channel encoder without any data compression.

Our study is restricted to channel encoding via systematic
and non-systematic binary LDPC codes of rate R. = k/n.
An LDPC codeword has length n > k& and is denoted by
x £ (z1, ..., ,). The codeword x is transmitted over a noisy
channel defined by its CSI, the received noisy vector being
y. The LDPC decoder should retrieve s from y with prior
knowledge of source and channel statistics.

A. Source Sate Information

The binary i.i.d. source is characterized by the parameter
= P(s; =1), where 0 < pu < % The source entropy is
given by H, = Ha(u), 0 < Hy < 1, where Hy(x) is the
binary entropy function. Our model is not restrictive, instead
of making a direct estimation of a stationary finite-memory
source as in [6], it is possible to convert a finite-memory
source into a piecewise i.i.d. non-uniform source [4]. The
EM estimation described in the sequel can easily tackle with
the piecewise variation of the source.

B. Channel State Information

Two kinds of binary input symmetric output channels
are considered: the binary symmetric channel with erasures
(BECBSC) and the complex binary input additive white
gaussian noise channel (BIAWGN). Characteristics and main
parameters of both channels are summarized below.

The BECBSC channel has a binary input and a ternary out-
put. The cross-over probability of its BSC part is A and the
erasure probability of its BEC part is . Channel observations
at the decoder input are derived from normalized likelihoods

obs(zs) = PWlT) Ly Dy i
Zj p(yslz;) 1 ify; =1
2 K
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where z; denotes the binary complement of z;, and X' =

——, where 0 < \ < % and 0 < e < 1. Consider the

— £
special case of BEC (A = 0). Using classical information
theoretical tools [2], it is easy to show that the maximum
achievable erasure probability for systematic codes is

1-R.
max = T 5 1 1
c 1— Re(1— H,) @
However, for non-systematic codes, we have
Emax = 1- RCHS (2)

For the special case of BSC (¢ = 0), the maximum achiev-
able cross-over probability for systematic codes is given by

HSRC = [1 - HQ()\mam)] - Rc[l - H2(Q)] (3)



where ¢ = (1 — Mpaz) + (1 — ) Adnaz- FOr non-systematic
codes, the maximum achievable cross-over becomes

H;R.=1—- Hy(Maz) (@)
The BIAWGN channel is defined as
yi = AeSPx; +m; with §=+/—1 (5)

where the three CSI parameters are amplitude A, phase
ambiguity ¢, and gaussian noise variance o2. Similar ex-
pressions for the capacity of BIAWGN with non-uniform
sources can be found in [1]. Capacity limits versus H, are
illustrated in Figures 1 and 2 for R, = 1/2.
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Fig. 1. Capacity limit versus source entropy, BEC and BSC.
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Fig. 2. Capacity limit versus source entropy, BIAWGN.

I1l. BRIEF STATEMENT OF THE EM ALGORITHM

The general model is depicted on Fig. 3. The observation
y is referred to as incomplete data and x = (X, y) as
complete data. When x = (x, y) is available, maximum-
likelihood estimation can be performed to determine SSI and
CSI at the decoder side. In a coded communication system,
the incomplete data y is the only available observation to
the decoder. ML estimation of a parameter 6 which includes
both SSI and CSI is therefore obtained by maximizing the

k: complete data, k = (x,y)
A N

x: missing data y: incomplete data (observed)
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Fig. 3. General model of EM source-channel estimation.

log-likelihood: b= arg maxg log p(y|6). Unfortunately, ana-
Iytical or numerical ML estimation by maximizing log p(y|9)
is not possible because an explicit expression for the log-
likelihood does not exist, or when maximization over @ is an
extremely difficult task. The EM algorithm is then employed
to compute an update 9711, knowing that the final estimate
depends on the initial value 6°. As the symbol vector x
is missing, the log-likelihood function is replaced by the
mathematical expectation over x, given the observed data
and the current parameter value. The algorithm proceeds in
two steps [3][9]

o E-step: Compute the Auxiliary function Q:

Q= E[log p(X,y|0)|y, 91]
= 3" log[P(y|x, 0) P(x|0)] APP;(x) ©)

o« M-step:
0" = arg max Q(016") @)

The auxiliary function is a sum over the codewords of a
product containing channel observations (CSl), the source
distribution (SSI), and a posteriori information provided
by the decoder from the previous iteration. Afterwards,
the decoder exploits updated source and channel statistics
provided by the estimation module to enhance its decisions.
The SSI part in the auxiliary function is

P(0) = P(s6) = 5= (1 - )= (8)

where wp (s) denotes the Hamming weight of s.

IV. EM APPLICATION TO BECBSC

Let us consider the binary symmetric channel with era-
sures as introduced in section Il. Let e denote the channel
error vector and E the channel erasure vector. The channel
observation is written as

P(y[x,0) = (A (1=A—e)r e montt) gont®) (g)

A. Expectation step on BECBSC

We write the logarithm of the joint distribution function
of parameters A, € and p, by combining (8) and (9). The
conditional quantity P(x|y, ") is equal to the codeword a



posteriori probability at iteration i. After some algebraic
manipulations, the auxiliary function becomes

Q(60)6) = log[#]gx o (€)] + logly—— € o (B)]
+ log[-— ]5 [wr (8)] + K log[(1 — )]
+ nlog[(l —A—¢)]
(10)

where &,[ | = £[ ] denotes mathematical expectation over
X. Now let us define soft symbols, soft errors, and soft
erasures to further simplify expression (10).

Soft source symbols s; are identified in the following
expectation expression:

k k
Elon((&)] = Y- Elsi] =5,

The exact definitions of soft binary source symbols and soft
binary code symbols are

§j = ZSJ' X APPZ(SJ)

8j

— APP(s; =1) (11)

Similarly, #; = APP;(z;) and for errors and erasures we

have
5= £l =2 Xy, P a) 7 x (L))
= (1 =2 xy;)* (@)% x (1 —a;)¥

and 3
Ej=4xy;x(1-y;)=E;

Finally, thanks to the above definitions of soft symbols, the
auxiliary function becomes

Q(010) = loglr—3—1¢ +logls——] s

u]§ + Nlog[(1 —p)(1 = A —¢)]

o
1
+ og[l_

B. Maximization step on BECBSC

Derive the auxiliary function with respect to u, and find the
source distribution update rule

: > 5

1+1 — j=1°J 14

I —% (14)

Derive the auxiliary function with respect to A to obtain the
following second degree equation

n—i—ZeJ YA+ (1—¢ ié =

Jj=1

n? —

Let A denote the discriminator of the previous equation. The
update rule for the cross-over probability is then given by

n+ 37, 6+ /AE)
2.n
Derive the auxiliary function with respect to ¢, then

n.e? — Z —)\)ZE’Z
j=1 j=1

AL = (15)

In a similar way, the update rule for the channel erasure
probability is

EH_I o n + Z?:l ‘E~j :l: V A()\Z) (16)
- 2.n

C. Two simple special cases, BEC and BSC

For a binary erasure channel without errors (BEC), the
update rule for the erasure probability reduces to

, i1 Ej
gitl = LJ;; ’ (17)

Also, for a binary symmetric channel without erasures
(BSC), the update rule for the cross-over probability reduces

to L
Zj:l €j
n

Figures 4 and 5 illustrate joint EM estimation and decoding
for a non-uniform i.i.d. source on an erasure channel. The
source parameter is u = 0.1. The LDPC code is a systematic
regular (3,6) with rate R, = 1/2, and length n = 2000
bits. Fig. 4 shows the estimated source parameter versus
the number of EM iterations. In all channel conditions,
converges relatively fast to its exact value. Fig. 5 depicts
the bit erasure/error rate performance of the same LDPC
code with and without source a priori probability. The EM
estimation induces no loss. Capacity limits are £,,,4,, = 0.5 in
absence of EM estimation and ¢,,,,,, = 0.68 when estimating
the source distribution.
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V. EM APPLICATION TO AWGN

In this section, we perform EM joint source-channel
estimation to enhance decoding of LDPC codes over a
complex AWGN channel defined by (5). The EM equations
related to the source are identical to the BECBSC case. The
observation for a codeword at the decoder input is

— 2?21 ‘yj -

Al ’2
(27r02)n e:vp( 202

P(y|X, 9) =

(19)
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Fig. 5. Performance of a systematic LDPC code on BEC. In absence of

source a priori, classical BEC decoders are non-probabilistic. Here we use
a probabilistic decoder on the BEC in order to embed the EM algorithm.

A. Expectation step on ANWGN

Combine (8) and (19). After some algebraic manipulations,
the resulting expression of the auxiliary function on AWGN
channel is

Q(610) = log[—"—15 + klog[(1 — )] — nlog[2mo”]

1—p
1 & 2 A2 &Ko
~ g7 24wl = 55 2l )
A n s
+;ZR{% (& ¢yj}
j=1

where soft complex symbols reduce to 2APP;(z; =1)—1

for BPSK alphabet. The notation |;|* means that condi-
tional expectation must be performed after taking the squared
module.

B. Maximization step on AWGN

Derive the auxiliary function with respect to p to get the
same EM update rule for the source distribution as for
BECBSC in (14). Then, derive the auxiliary function with
respect to the amplitude A, and evaluate high order moments
with the product of marginals instead of the joint a posteriori
probability, to get the amplitude update rule

it T Ry} R{wyes )

n 2 -
>je1 X, APPi(5)| 25 Yy
(21)
Finally, the EM update rule for noise variance and phase
ambiguity are
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g. 6. Systematic and non-systematic LDPC codes on AWGN, R. = 1/2.

The above expressions for the AWGN channel are well-
known in the literature in the case of uncoded modulations
and uniform sources.

Fig. 6 illustrates the word error rate performance on AWGN
in three different situations for n = 2000. A systematic
regular (3,6) LDPC code is compared to a non-systematic
split-LDPC code with a splitter degree d; = 3 [1]. The non-
uniform source has p = 0.1. The AWGN channel has a
uniformly distributed random phase and a random amplitude
in the range 0.1...10. A small fraction of 2% pilots is used
to initiliaze the phase ambiguity. As shown in Fig. 6, the
EM algorithm is capable of attaining the performance of the
perfect SSI and CSI knowledge scenario. Similar behavior
is observed on BSC.
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