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Abstract—We propose new rate-flexible low-density parity-
check (LDPC) coding schemes for secrecy over a compound
channel with L parallel links. These codes, called anti-root LDPC
codes, have good performance at both finite and asymptotic code
length while all links are jointly encoded. Firstly, an algebraic
security scheme is developed based on the anti-root LDPC
ensemble and a source splitter. Secondly, an information theoretic
security scheme is built from the same splitter with the adjunction
of a random sequence. Then, we present a new diversity-security
tradeoff for channels exhibiting block fading or block erasure.
Finally, we describe anti-root LDPC ensembles with higher
diversity or security orders to attain the aforementioned tradeoff.

I. INTRODUCTION AND NOTATIONS

The design of error-control codes was mainly dedicated in
the past to source and channel coding [1][2][3] for single-
user and multi-user systems. The era of physical-layer security
brought the challenge of constructing new error-control codes
that ensure secrecy while maintaining quality of service [4].

In [5], we introduced the anti-diversity concept for secure
communications over compound channels. The idea of the
anti-diversity concept is based on the fact that it is impossible
to have perfect secrecy when the communication system has
full diversity. Thus, by intentionally violating the conditions
for full diversity, we assure that the system is diversity defi-
cient. Then, we constructed anti-root LDPC coding schemes
for both perfect algebraic and information theoretic security.

The coding scheme in [5] was designed for coding rates
R ≥ 1/2. Thus, in this paper we propose a new anti-root
LDPC code ensemble that is rate-flexible, which allows for
coding rates 0 < R < 1. We show that the proposed anti-
root LDPC ensemble has a good finite-length performance and
good decoding thresholds at asymptotic length.

An important contribution of the paper is the study of
diversity-security tradeoff, which has not been investigated in
secure communications literature before. In [6], a new family
of full-diversity LDPC codes was introduced. As full-diversity
should be avoided for secure communications, we developed
a new family of LDPC codes that achieves a diversity order
allowed by the diversity-security tradeoff of the system by
joint coding among the communication links.

The communication channels that we consider in this paper
have L links. However, for simplicity of explanation, we start
deriving the results for 2 links and then generalize the results
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for L links. Figure 1 depicts a compound communication
system with two identical links defined by their transition
probabilities pY |X(y1|v) and pY |X(y2|w). The links of the
compound channel are any binary memoryless symmetric
(BMS) channels with inputs v, w ∈ FN/2

2 and outputs
y1, y2 ∈ YN/2 for the output alphabet Y . We assume that the
source produces K uniform bits. Then, a rate-K/N binary
encoder generates a length-N codeword, which is split into v
and w of length N/2 to be transmitted on the parallel links.
In the rest of the paper, for simplifying the notations, a unique
letter is used to denote a random variable and any given
value taken by that random variable depending on the context.

We assume the worst case scenario, where Eve has direct
access to one of the two links without any noise, i.e. z = v or
z = w, where z ∈ FN/2

2 is the output of the channel between
Alice and Eve. The aim of our work is two-folded: providing
excellent performance for the legitimate listener Bob, and
guaranteeing security against the eavesdropper Eve. For the
source message M = (a1, a2, . . . , aK) ∈ FK

2 , two types of
security are considered:

• Algebraic security. Eve must not be able to solve any
individual bit ai, ∀i = 1 . . .K . It is equivalent to
absence of meaningful information, I(ai; z) = 0 as in
[7]. We guarantee algebraic security by the means of a
non-stochastic LDPC encoder and a weight-2 splitter in
Section II-A.

• Information theoretic security. Eve must not be able
to determine any information derived from the source
bits. Hence, the coding scheme must guarantee a zero
information leakage, i.e. I(M ; z) = 0 or equivalently
H(M |z) = H(M). We guarantee perfect secrecy by the
means of a stochastic encoder in Section II-B.
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Figure 1. Model of the two-link compound channel. The two links defined
by pY |X are identical. Eve has access to the input of one link only.



The organization of the paper is as follows. First, a rate-
flexible and finite-length-efficient LDPC ensemble and a split-
ter is proposed for algebraic and information theoretic security.
The Bit Error Rate (BER) and Word Error Rate (WER)
performances of the anti-root LDPC ensemble is given for
different coding rates. Then, the density evolution (DE) equa-
tions are derived for the proposed anti-root LDPC ensemble
and the belief propagation thresholds on the binary erasure
channel are found for various coding rates. In Section IV, the
diversity-security tradeoff and the upper bound for the coding
rate is studied for block-fading links. Finally, the (s, d, L)-
root LDPC ensemble is proposed for achieving the diversity-
security tradeoff.

II. ANTI-ROOT LDPC FOR SECURITY

In [5], we constructed an anti-root LDPC code ensemble
for secure communications over compound channels. In this
section, a new rate-flexible anti-root LDPC code ensemble
with good finite-length performance will be introduced. The
anti-root LDPC code design is based on the anti-diversity
concept, which refers to the code design principle where the
fundamental diversity rules are violated intentionally to avoid
full diversity. Further details can be found in [5].

A. Algebraic security
The algebraic security of our new code construction is

proved based on the following lemmas.
Lemma 1: Let x, y ∈ Fn

2 with Hamming weights wH(x),
and wH(y) respectively. Assume that x and y have the same
parity. Then, wH(x+ y) is always even.
Proof. Let l be the number of indices where both x and y take
the value of 1. Then, wH(x + y) = wH(x) + wH(y) − 2l,
which is always an even number when x and y have the same
parity. !.

Lemma 2: Let {x1, x2, ..., xL} be L vectors in Fn
2 . As-

sume that the Hamming weights wH(xi) is even, ∀i. Then,
wH(

∑L
i=1 xi) is always even.

Proof. Apply Lemma 1 (L− 1) times. !.
Lemma 3: Assume that the Hamming weights wH(xi) is

odd, ∀i. Then,∀L even, wH(
∑L

i=1 xi) is even.
Proof. Apply Lemma 1 (L/2) times. Then, apply Lemma 2
once. !.

Lemma 3 is not directly used in the rest of the code designs.
However, the lemma gives us an important idea about the use
of odd-weight rows in parity check matrices of the LDPC
codes. To get an even-weight row as a combination of odd-
weight rows, one needs an even number of rows, which is an
impractical constraint on the design of codes for security.

Here, we briefly explain the general structure of the anti-root
LDPC ensemble whose parity check matrix for two parallel
links is shown in Figure 2. Let K

N be the design rate (R is
the effective rate), then K

N ≤ R < 1. The N binary digits of
a codeword are divided into four families. A family of K/2
information digits 1i and a family of (N −K)/2 parity digits
1p to be sent on the first link. Similarly, the two families 2i and
2p are to be sent on the second link. The submatrices A1 and

H = A1 A2 B

1i 2i 1p&2p

K/2 K/2

N −K

di

2di( 1
R − 1)

di dp

2di( 1
R − 1) dp

N −K

Figure 2. The general structure of the parity check matrix for the anti-root
LDPC code ensemble.

A2 of size (N−K)×K/2 correspond to the edges connecting
bit nodes 1i and 2i to the check nodes, respectively. Whereas,
the submatrix B of size (N −K)× (N −K) corresponds to
the edges connecting the parity nodes 1p and 2p to the check
nodes. To satisfy the rate constraint, we allocate the bit node
and check node degrees as follows. The average check node
degrees under A1 and A2 are di. Then, the bit node degrees
under A1 and A2 are 2di(1/R− 1). The bit node and check
node degrees under B is dp.

As in [5], a source splitter is needed due to the systematic
structure of the code ensemble. For security, we should not let
Eve observe the information bits directly [8]. Therefore, a non-
singular, and sparse source splitter S of size K×K is placed
between the source and the LDPC encoder, such that M = uS,
where u = (u1, u2, . . . , uK) ∈ FK

2 is the LDPC encoder input.
When S is regular with degree ds, i.e. the Hamming weight
of all rows and columns is ds, each source digit is split into
ds digits [9][10]. In this work, we consider a quasi-regular
weight-2 non-singular splitter S with degree ds = 2, except
for one row and one column with degree 1.

Lemma 4: Any quasi-regular weight-2 non-singular splitter
S can be decomposed as

S = Π · S0 · Π
′
, (1)

where S0 is a double diagonal splitter, Π and Π
′

are K ×K
permutation matrices.
For simplicity, we assume that S = S0. Then, each source bit
ai is split into two bits as follows

ai = ui + ui+1, (2)

for i = 1 . . .K − 1 and aK = uK . We force the last source
bit to be uniformly random, aK = Bern(1/2), and reduce
the exact message entropy to H(M) = K − 1 bits. As
shown in Figure 3, the splitter outputs the K-bit sequence
u = (1i & 2i), which is divided into two parts to be sent to
the LDPC encoder such that the K/2 bits at odd positions go
to 1i and the K/2 bits at even positions go to 2i. In order to
decode the source message M , Eve needs to know both bit
families 1i and 2i. When Eve observes z = v, all bits 1i are
known, but all bits 2i are missing. The special structure of the
anti-root LDPC code given in Figure 2 does not allow Eve to
find any of the missing bits 2i. Similarly, when Eve observes
z = w, she cannot find the missing bits 1i.

Theorem 5: When all rows of the submatrices A1 and A2

have even parity with di > 0 and dp ≥ 2, the anti-root code
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Figure 3. The non-stochastic encoder converts the source message M into
half codewords v and w to be sent on each link. M ∈ FK

2 , v, w ∈ FN/2
2 .

ensemble is algebraically secure.
Proof. Note that, to solve an information bit from 1i,

a combination of rows in A1 should produce a weight 1
sequence. As stated by Lemma 2, the sum of rows with even
parities would always produce a sequence with an even parity.
Thus, when all rows of the A1 matrix have an even parity,
none of the information bits in 1i can be solved. Similarly, all
rows of the A2 matrix should have even parity by symmetry.
However, the submatrix B may have even or odd parity rows
as the parity bits do not need to be protected for algebraic
security. !.

The algebraic security of the anti-root code ensemble can
be generalized to L-links in a straightforward manner by
introducing the information nodes (1i, 2i, ..., Li) with the
corresponding parity nodes (1p, 2p, ..., Lp) and the submatri-
ces (A1, A2, ..., AL, B) with appropriate sizes when Eve is
observing only one of the L links.

B. Information Theoretic Security
As shown in the previous section, the algebraic security is

realized by using a non-stochastic encoder. In this section, we
show that the information theoretic security can be realized by
replacing the non-stochastic encoder with a stochastic encoder.
Hence, this section introduces the stochastic encoder structure
for perfect secrecy.

For the algebraic security, the conditional entropy of the
message is given by

H(M |z = v) = H(1i|z = v) +H(2i|z = v, 1i) = H(2i|v).

where the message entropy is H(M) = K (we omit aK =
Bern(1/2) for simplification).

Note that, the information leakage H(2i|v) depends on
the particular construction of the parity check matrix H
and unknown. However, the conditional entropy is always
bounded as 0 < H(2i|v) ≤ K/2. Similarly, for z = w,
0 < H(1i|w) ≤ K/2. Then, due to the information leakage
caused by the non-stochastic encoding scheme, the conditional
entropy of the message satisfies

H(M |z) ≤ K

2
< K = H(M). (3)

In summary, although the non-stochastic encoding scheme
achieves algebraic security, it does not guarantee information-
theoretic security.

Next we introduce our stochastic scheme, which guarantees
perfect secrecy in the information theoretic sense. In order
to achieve perfect secrecy, the stochastic encoding scheme
sacrifices K/2 bits in the message, i.e. H(M) = K/2.
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Figure 4. The K ×K splitter in the stochastic scheme reads a message M
of K/2 bits and a zero sequence of K/2 bits. A random sequence of K/2
bits is applied at the splitter output before channel transmission.
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Figure 5. Splitter structures for stochastic encoding for two links (left) and
L links (right). The graphs have a 2-regular degree on the left (S is sparse)
and a high degree on the right (S−1 is dense).

We show that the conditional entropy satisfies H(M |z) =
H(M) = K/2 using the proposed stochastic encoder.

The encoding scheme is modified as shown in Figure 4.
The K/2 bits of the splitter input comes from the message
M = (a1, a2, . . . , aK/2) and the rest of the input bits are filled
with a zero sequence of length K/2. Furthermore, a random
sequence r = (r1, r2, . . . , rK/2) of K/2 independent uniform
bits is added to the splitter outputs. Hence, the K/2 bits of
the codewords v and w are filled by the splitter outputs. The
parity bits of an LDPC encoder fill the remaining N −K bits
in both codewords v and w. The analysis is valid for joint
encoding by a two-link anti-root LDPC, as well as for two
separate length-N/2 LDPC codes. The splitter structures for
two links and its extension to L links are illustrated in Figure
5. In a straightforward manner, the following Theorem 6 can
be generalized to an eavesdropper reading one link out of L
links, for any L ≥ 2.

Theorem 6: The stochastic coding scheme achieves
H(M |z) = K

2 = H(M) on a two-link compound channel,
i.e. it guarantees perfect security in the information-theoretic
sense.

Notice that the coding scheme uses the same splitter struc-
ture as in [5] but a different LDPC code ensemble. Thus, the
proof is similar to the proof of the Theorem 4 in [5].

III. THE PERFORMANCE FOR THE LEGITIMATE USER

In this section, the performance of the anti-root LDPC code
ensemble will be studied. First, the finite-length performance
will be examined by comparing the bit and word error rates of
the anti-root LDPC ensemble with a fully random LDPC code
for various coding rates. Then, the asymptotic performance of
the anti-root LDPC ensemble will be analyzed over a binary
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erasure channel by comparing the density evolution thresholds
with the fully random LDPC ensemble for various rates.

A. BER and WER Performance of the Anti-root LDPC

In this section, the BER and the WER performance of the
anti-root LDPC code ensemble on BI-AWGN channels under
belief propagation decoding is compared with the performance
of the fully random LDPC ensemble for a finite block length of
N = 2000. The performance of the proposed code ensembles
depends on the construction of the parity check matrix given
in Figure 2. The Monte Carlo simulations are presented for
rates R = 1/2 with di = 2 and dp = 2 and R = 3/4 with
di = 9/2 and dp = 3 in Figure 6 and Figure 7.

The proposed code constructions are almost regular. Thus,
the performance of the proposed code constructions is com-
pared with fully random regular LDPC codes. The aim is to
check if the proposed anti-diversity codes perform similar to
fully random LDPC codes. The results in Figure 6 and Figure
7 show that our constructions perform slightly better than a
rate 1/2 regular (3, 6) LDPC code. In terms of BER and WER,
the anti-root LDPC code ensembles show good performance
such that for the rate 1/2 anti-root code, the BER is less than
10−5 and WER is less than 10−4 on information bits at 2 dB.
The BER performance of the rate 3/4 anti-root code is 1.5
dB away from the Shannon limit similar to the performance
of the rate 1/2 anti-root code.

Note that the error rate is calculated over the information
bits as Bob is interested in decoding the information bits
only. Also, this performance simulation does not include the
performance of the splitter. After applying the splitter, the error
rate would be roughly multiplied by 2 for the source bits (refer
to the splitter structure in (2)).

B. DE threshold on BEC

This section studies the DE equations [3] for the asymptotic
performance of Bob under iterative decoding for sufficiently
large codeword length. The performance of the legitimate user
Bob depends on the construction of the anti-root LDPC
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Figure 7. The coded word error rate performance of the anti-root LDPC
code on BI-AWGN channel under belief propagation decoding.

ensemble, which is composed of the submatrices A1, A2,
and B. The graph defined by the parity check matrix of
the anti-root LDPC code in Figure 2 has multiple edge
types. Since, we are only interested in the performance on
the information bits, different polynomials are needed to be
defined for the density evolution of the information and parity
messages[6][11].

For algebraic security, the degree distributions of A1 and
A2 from an edge perspective, at bit nodes and check nodes
respectively, are defined as:

λI(x) = λI
kx

k−1 + (1− λI
k)x

k (4)

and
ρI(x) = ρIjx

j−1 + (1 − ρIj )x
j+1 (5)

where

j ≤ di < j + 2 , j even
k = ⌊2di(1/R− 1)⌋

and

λI
k =

(k + 1− (2di(1/R− 1)))k

2di(1/R− 1)
(6)

ρIj =
(j + 2− di)j

2di
(7)

The degree distribution for the submatrix B at bit nodes
and check nodes is given by

λP (x) = ρP (x) = λP
l x

l−1 + (1 − λP
l )x

l (8)

where
l = ⌊dp⌋ (9)

and
λP
l =

(l + 1− dp)l

dp
(10)

We introduce the node-perspective polynomials ρ̃I(x) and
ρ̃P (x) as

ρ̃I(x) = (
j + 2− di

2
)xj + (

di − j

2
)xj+2 (11)

ρ̃P (x) = (l + 1− dp)x
l + (dp − l)xl+1 (12)



The symmetric structure of the proposed anti-root LDPC
code and the identical communication links result in two
message densities to be used in DE equations:

• f is the probability density function of log-ratio messages
from bit node 1i to check node c, and 2i to c.

• q is the probability density function of log-ratio messages
from bit nodes 1p and 2p to check node c.

The evolution of the two message densities fm and qm can
be found by the tree representations drawn if Figure 8 and
Figure 9, respectively. After drawing the local neighborhood
of each type of bit nodes, we find the following DE equations
for BEC at decoding iteration m+ 1:

fm+1 = ϵλI (1− ρI (1− fm) ρ̃I (1− fm) ρ̃P (1− qm)) (13)
qm+1 = ϵλP (1− ρ̃I (1− fm) ρ̃I (1− fm) ρP (1− qm)) (14)

where ϵ is the erasure probability of the BEC. Note that, the
DE equations for the Gaussian channel can be derived in a
similar way.
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c

µ
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2i1i p

qmfm
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ρ̃I(x) ρ̃P (x)

c

2i1i p

qmfm

ρI(x)

fm

ρ̃I(x) ρ̃P (x)

Figure 8. Tree representation of the local neighborhood of information bit
node 1i showing the outgoing message fm.
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ρ̃I(x)
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Figure 9. Tree representation of the local neighborhood of parity bit node
p showing the outgoing message qm.

The density evolution thresholds are compared in Table I.

Table I
BELIEF PROPAGATION THRESHOLDS ON THE BINARY ERASURE CHANNEL

Rate (db, dc) Fully Random Anti-Root di dp
3/4 (3,12) 0.21047 0.21594 4 4
3/4 (3,12) 0.21047 0.21469 5 2
2/3 (3,9) 0.28283 0.28113 3 3
1/2 (3,6) 0.42944 0.44511 2 2
1/3 (4,6) 0.50613 0.56131 2 2
1/3 (4,6) 0.50613 0.58211 1.5 2
1/4 (3,4) 0.64742 0.66126 0.5 3
1/4 (3,4) 0.64742 0.66160 1 2

IV. DIVERSITY-SECURITY TRADEOFF

In this section, we examine the maximal achievable diversity
order d and the security order s when each link is undergoing
a quasi-static fading. For a system with L links, the maximal
achievable diversity order d, and the security order s, Eve is
missing L− s links. For security, the code should not recover
more than L− s− 1 links. To achieve secrecy, the number of
missing links for Eve should satisfy:

L− s ≥ d (15)

Whereas, the code should recover d− 1 missing links so that
Bob can decode the secret message when the diversity order
is d. Hence, we can state the diversity-security tradeoff as

d+ s = L (16)

Note that, the diversity-security tradeoff cannot be achieved
by coding the L links separately. In the following sections, an
(s, d, L)-root LDPC ensemble will be proposed based on the
joint coding on L links.

The upper bound on the coding rate R should satisfy the
block-fading Singleton bound, which is stated as

d ≤ ⌊L(1−R)⌋+ 1 (17)

When d and s are achieved, by using (16) and (17), the coding
rate should not exceed

R ≤ s+ 1

L
(18)

V. (s, d, L)-ROOT LDPC ENSEMBLE

When there are only two links L = 2, and Eve is listening
to one of the links s = 1, the maximum achievable diversity
order is d = 1. This diversity-security tradeoff is achieved by
the stochastic splitter structure and the anti-root LDPC code
ensemble proposed in Section II. To achieve a higher diversity
order with security constraint, more links are needed between
Alice and Bob, i.e. L > 2.

In this section, we present an (s, d, L)-root LDPC ensemble
and splitter structures for L = 3 links. When Eve cannot
intercept any of the links, the security order is s = 0. In this
case, the maximal diversity order is d = 3, and the coding
rate should not exceed R ≤ 1

3 .
When Eve can intercept one of the links, the security order

is s = 1. The anti-root LDPC code proposed in Section II
achieves the diversity order d = 1. However, by using the



diversity-security tradeoff, the maximal diversity order is d =
2. Using the Singleton bound (17), the coding rate is upper
bounded by R ≤ 2

3 . Next, we propose an (1,2,3)-root LDPC
ensemble that achieves the coding rate upper bound R = 2

3 .
The structure of the parity check matrix for the proposed

(1,2,3)-root LDPC ensemble is shown in Figure 10, where Π
represents the class of random permutation matrices, and 0
represents the zero matrix. The parity check matrix is also
composed of random matrices of class Bi and Bp, and three
random matrices with row weights w2.

Theorem 7: When the row weights of the matrices of class
Bi is even and w2 is odd, the (1,2,3)-root LDPC ensemble
constructed by the parity check matrix in by Figure 10 is
algebraically secure for s = 1 and achieves the diversity order
d = 2.
Proof. The proof is based on Lemma 2. Eve is listening to
one link. The row weight of any row under two of the three
remaining information bit families is even. By Lemma 2, any
combination of the rows under two of the three information bit
families is also even. Hence, Eve can not solve any information
bits from the two remaining information bit families. Thus,
algebraic security is guaranteed. Bob, who has access to two
links, can solve the remaining information bits in the third
link. Hence, the diversity order is d = 2. !.

H =
Bi

1i

K/3

2i 3i 1p 2p 3p

K/3 K/3 K/6 K/6 K/6

K/2

w2

w2

w2

Bi

Bi Bp

Bp

Bp

Π

Π Π

Π

Π

Π

0

0

0

0 0

0 0

0 0

Figure 10. The structure of the parity check matrix for the (s = 1, d =
2, L = 3)-root LDPC ensemble.

The information theoretic security is guaranteed by using
the source splitter in addition to a random sequence as
discussed in Section II-B.

The diversity-security tradeoff tells us that it is possible
to communicate securely even if Eve intercepts any two of
the three links. In this case, the security order is s = 2,
and the diversity is d = 1. To achieve the security order
s = 2, we propose a new splitter structure in conjunction with
some randomness. The new stochastic scheme will sacrifice
2K/3 bits in the message by reducing the message entropy
to H(M) = K/3 to achieve the security order of s = 2. The
splitter input is modified to include M = (a1, a2, . . . , aK/3)
and two zero sequences of length K/3. Let r1 and r2 be two
random sequences of K/3 independent uniform binary digits.
Then, the random sequences r1, r2, and r1 + r2 is added
to three splitter outputs. The stochastic structure is shown in
Figure 11 where the splitter output fills K/3 bits in v1, v2, and
v3. The remaining N −K bits in v1, v2, and v3 will be equal
to parity bits of an anti-root LDPC encoder whose structure
is given in Figure 2.

M

0

0

1i

2i

3i

K
3

K
3

K
3

vK/3
1

1i

r1

vK/3
2

2i

r2

vK/3
3

3i
r1+r2

Splitter S
(M, 0, 0) = uS

u = (1i&2i&3i)

Figure 11. Splitter composition for stochastic encoding over three links for
s = 2 and d = 1.

VI. CONCLUSIONS

We proposed a new anti-root LDPC ensemble that is rate-
flexible and has a good finite-length performance for secure
communications over compound channels. Algebraic security
and information theoretic security are guaranteed for the
proposed coding schemes. The finite length and asymptotic
performance of the anti-root LDPC ensemble are compared
with the fully random LDPC ensemble. The joint coding
structure between links results in a longer code. Joint coding
between the links also allows for a higher diversity order. In
fact, there is no diversity without joint coding. We studied
the diversity-security tradeoff over compound channels and
constructed the (s, d, L)-root LDPC ensemble to achieve the
diversity-security tradeoff.
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