N ew space-ti me coding techni ques
with bit interl eaved coded
mo dul ati ons

Thesepresemeepour obtenir le grade de docteur de I'Ecole nationale
superieure desteleconmunications

Specalite: Electronique et communications

ENST Paris-Mitsubishi Electric ITE TCL Rennes

Nicola s GRESSET

DRAFT Version

Rapp orteurs:  Hans-Andrea Loeliger
Raymond Knopp

Examinateurs: Hikmet Sari
Gerevieve Baudoin
JeanClaude Bel ore
Gilles Zemor

Directeurs de these: Josem Boutros
Lo-c Brunel

13, Decenber, 2004






Thesis abstra ct

This thesis report describes new designsfor transmitters and receivers of bit interleaved coded
modulations over multiple antenna channels. The objective is to achieve near Shannoncapacity
performance over ergadic channels and near outage probability performance over block fad-
ing channels. Iterativ e joint detection and decading are applied in the aim of achieving near
maximum likelihood performance. Design criteria are derived for ead block optimization from
the error performance expressionsunder the ideal interleaving assumption. First, we describe
the binary mapping optimization for ergadic channels by introducing the new concept of mul-
tidimensional mapping that provides large amount of coding gain. We achieve near capacity
performanceeither with turb o-codesor with multi-dimensional mappingsassaiated with a sim-
ple code. Then, we presert the bit interleaved coded modulation with linear precoding as a
Space-Timecode for multiple antenna block fading channels. We shaw that the channel inter-
leaver is the fundamental part of the bit interleaved coded modulation calling the shotsabout the
achieved diversity. We describe the linear precoding optimality condition and a classof quasi-
optimal linear precaders. The minimal linear precader size providing full diversity is deduced
from a modi ed singleton bound applied to the global Euclidean code. We shaw that full diver-
sity and quasi-optimal coding gains are obsened for a given error correcting code. Finally, we
achieve near outage capacity performancethanks to turb o-codes. Next, iterativ e joint detection
and decaing techniques are considered,we describe a near optimum soft-input soft-output list
spheredecader which allows the computation of a posteriori probabilities for very high spectral
e ciency transmitter schemeswith reducedcomplexity.







Resume de la th ese

Ce rapport de thesepresene des nouvelles methodes d'emissionet de reception basessur les
modulations codeesa bits entrelaces et optimiseespour les canaux a antennes multiples. Le
premier objectif est d'atteindre des performancesproches de la capacite au sensde Shannon
pour les canaux ergadiques. Nous cherchons ensuite a obtenir destaux d'erreur prochesde la
capacite de coupure du canal a antennesmultiples subissan desevanouissemets par blocs. Un
traitement it eratif de detection et de decadageconjoints este ectu edansl'objectif d'atteindre les
performancesd’'un recepteura maximum de vraisemblance. Lescrit eresde conceptionde chaque
organede la modulation codee sont deduits des expressionsdes performancescalculeessousla
contrainte d'optimalit e de I'entrelaceur. Nous presertions dans un premier temps des optimisa-
tions de I' etiquettage binaire et intro duisonsla notion d'etiquettage multi-dimensionnel. Sur les
canaux a antennes multiples ergadiques, des performancesproches de la capacite de Shannon
sort aussibien atteintes en utilisant desturb o-cadesque desetiquettagesoptimisescouplesa des
codescorrecteurselemertaires. Dans le casdescanaux a antennesmultiples et evanouissemets
par blocs,la modulation codeea bits entrelacesestun code spatio-temporel. Nous montrons que
I'entrelaceur de canal estla piecematressedu systeme,dictant saloi quant a l'ordre de diversite
obsene au recepteur. Nousintro duisonsdespre-caleurslineairea I' emission,derivonsun crit ere
d'optimalit e pour leur conception, et presertons une classede pre-cadeurs quasi-optimaux. Le
facteur d'etalemert spatio-temporel minimal garantissant une diversite maximale est deduit de
la borne du singleton appliqgueeau code euclidien global. Nous montrons que les diversitesmax-
imales et gains de codage quasi-optimaux sort atteints pour chaque con guration de canal et
pour un code correcteur donne. Des performancesprochesde la capacite de coupure du canal
sort obtenuesgracea l'utilisation de turb o-codes. Finalement, nous presenons un detecteur a
ertr ee souple et a sortie souple quasi-optimal et a complexite reduite pour les modulations a
haute e cacit e spectrale transmisessur descanaux a antennes multiples.
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| ntro ducti on and Thesis Outl ine

Digital communications in its electric form appearedin 1840with the telegraphic transmission
code invented by Sarmuel Morse. Emile Baudot improved the data rate of telegraphic lines in
1874 with his Baudot code (i.e., high data rate for text over electric wires). In 1880, Alexan-
der G. Bell and Thomas Edison dewelopped the theory of telephory (i.e., voice over electric
wires). In 1924, Harry Nyquist proposeda simple theory for reducing the distortion in tele-
graph transmission. John Baird implemented a television system with a rate of 5 frames per
secondand a resolution of 30-lines per frame. Digital communications becamea topic of great
interest for both the mathematical and the engineeringcommunities since the introduction of
a mathematical model for information theory by Claude E. Shannonin 1948 at Bell Labora-
tories. He also introduced the fundamenal concept of information and capacity: \what is the
best transmission data rate over a given channel?". Once this theoretical limit is determined,
one can expect to give an answer to the question: \How to designa practical transmitter that
approadesthis limit?". This question haunts the mind of thousands of researters since that
time. Undoubtedly, telecommunications are linked to the overall technical progressin the last
certury. They acquireda more and more important placein the daily life sincethe mobile phone
becamedemacratized in the mid 1990's.

The today objectives of mobile phone technologiesare: improving the reliabilit y of data or
voice transmissions (Quality of Service), improving the data rate, i.e., the services,minimizing
the hardware cost thanks to powerful software processing,and allowing a maximal number of
users. All theseobjectivesare related in part or ertirely to the physical layer, and in particular
to digital communications technologies. Finally, all these objectives are jointly achieved when
nding a solution to transmit the data with a maximum data rate and a minimum error rate.

The rst objective is to enhancethe data rate on multi-path fading channels. The two
corvincing solutions intro ducedin the last decadesvere OFDM and multiple antennasin trans-
mission. In order to enhancethe bad performance obsened on fading channels, we usually
exploit somediversity provided by a channel ergadicity, and multiple transmit or receive anten-
nas. Practically, multiple antennasare already chosenfor UMTS, the third generationof mobile
phones. For the fourth generation,a combination of multiple antennasand OFDM is considered
asa good candidate.

In the (not so) far future, the most important wirelesscommunications objective will be to
provide high data rate wirelessInternet connections. As an example, HiperLAN Type 1l is a
wirelesslocal area network standard designedto provide a 1Mb/s to 20Mb/s communication
betweenportable devices.HiperLAN Type 2 or IEEE 802.11standards are intended to provide
6Mb/s to 54Mb/s data rates. Actually, the objectiveis not to rival wired communications which
already provide data rates around 1Gb/s for LANs, but to provide a comfortable connection
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with the great advantage of mobility. This will not be feasiblewithout the use of multiple an-
tennas.

This thesis report describes the design of transmitters and receivers for single user multi-
ple antenna channels. We do not consider OFDM modulations or multi-user communications.
However the ideas and principles described in this thesis report are applicable to OFDM with
few changes. The direct practical issueof this thesis would be broadcasting, but the results are
alsotransposableto multi-user techniques.

The outline of the thesisis:

In Chapter 1, we introduce the multiple antenna channel and its mathematical model.
We then introduce the essetial material for an information theorical analysis of multiple
antenna channels. The fundamertal limits of an ergodic channel is Shannon capacity, we
can also derive a discrete-input mutual information which is a more limiting quantity.
For block fading channels, we recall that Shannon capacity is null, we derive the outage
probability with Gaussian and discrete input. Next we recall the recertly introduced
diversity-multiplexing tradeo which enablesto seehow optimal a given system is for
multiple antenna channelsand high data rates. Finally, we de ne the singleton bound on
the diversity when the transmitter rate is constart.

In Chapter 2, we describe the system model and notations of a bit interleaved coded
modulation applied to multiple antenna channels. The receiver is supposedto be iter-
ative in order to achieve quasi-optimal performance at feasible complexity and focus on
the essemial limitations imposedby the channel. After the presernation of the optimality
conditions, we derive performance estimations for ergodic and block fading multiple an-
tenna channels. Theseperformanceevaluations are basedon the exact computation of the
pairwise error probability. Next, classicalupper bounding techniquessud asunion bound
or tangertial spherebounds are usedto estimate the optimal achievable frame error rate
and bit error rate.

In Chapter 3, we focuson the transmitter optimization. We decomposethe BICM onto dif-
ferent blocks and optimize them independerily beforeconsideringthe global optimization.
First, the labeling optimization is considered,we shav how to achieve high potential gains,
in particular for ergadic channels. Next, we considerlinear precoding and introduce the
conditions of optimality for ergadic, quasi-static and block fading channels. We describe
a new construction of linear precodersthat provide quasi-optimal coding gainsfor a given
target diversity. We then considerthe singleton bound on the diversity order to determine
the minimal precoder sizethat guaranteesfull diversity. Finally, we optimize interleavers
in order to approad the perfect interleaving conditions.

In Chapter 4, we study the receiwvers for bit interleaved coded modulations and describe
in detail the maximum likelihood lattice spheredecaler algorithm. We then introduce a
new soft-input soft-output detector basedon the a posteriori probability detection over
a spherical list (soft-input soft-output spheredecader). A classicalsoft-input soft-output
minimum mean square equalizer is then described and some complexity reductions are
considered. We then compare the complexity of suc receivers and shov near-capacity
performance.

Finally, conclusionsand future work perspectivesare given. We report somecomplemenary
material in the appendices.




Chapter 1

Generalities about multi ple antenna
channel s

I ntro duction

Multiple antenna channels becamea widespread solution for near future wirelesstelecommnu-
nication systems. The receivwe antennas naturally enhancethe performance providing multiple
independen obsenations of the transmitted signal. Depending on the separation betweenthe
transmit antennas, the receiver obsenescorrelated or independert obsenations of the transmit-
ted signal. If the transmit antennas are not spatially de-correlated,the phasedarray antennas
can produce single and multiple beamsthat allow spatial selectivity. This technique is par-
ticularly useful in downlink, where the base station can locate the receiver and transmit in a
pinpointed direction with a lower amount of power. Moreover, the processingcomplexity is
mainly at the transmitter end, which enhancesthe mobile phonesautonomy. Beamforming
techniques will not be discussedin this thesis report, which focuseson multiple antenna diver-
sity techniques. When the transmit antennas are separatedby a distance greater than half the
wavelength, the obsenations at the receiver are supposedto be independert. In this case,the
transmit antennas are basically usedto either

1. transmit the samesymbol over all the transmit antennasin a way to enhancethe perfor-
mance

2. or transmit di erent symbols over the transmit antennasin a way to enhancethe data rate

Thesespatial diversity techniquesare relevant in the uplink, when the transmitter hasa limited
complexity and the receiver should recover the information of multiple interfering transmitters.
Moreover, this could be usedto provide diversity for downlink reception at the handset, es-
pecially if it is stationary and does not obsere temporal diversity. If the handsetis moving
fast, good performanceis naturally provided by the temporal diversity. If a target error rate is
xed, the data rate can be adapted thanks to a channel feedba from the receiver. The tuning
possibilities are enhancedthanks to the multiple transmit antennasand excellert data rates can
be achieved in the caseof good links.

In this rst Chapter, we will presen the channel mathematical model and its validity in
Section 1.1. Then, we will presen the state of the art of digital communication systemsfor
multiple antenna channelsin Section1.2. In Section1.3, we will exposethe fundamertal limits of
multiple antenna channels,i.e., the Shannoncapacity limit, the mutual information with discrete
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Figure 1.1: Rich scattering ervironment. Multiple antennas system.

input, the outage error probability for block fading channels and the diversity-multiplexing
tradeo. We will also considerthe coded modulations and the singleton bound on the diversity
order, depending on the code rate.

1.1 Multiple antenna channel model

In this section, we will presen the multiple antenna channel model and its validity. Let us con-
sider a rich scattering environment and a channel with multiple transmit and receive antennas.
Wireless communications experiencemulti-path propagation becausethe signalis re ected from
nearby surfaceson its way to a receiver. An example of some propagation paths are drawn in
Fig. 1.1. Multi-path propagation causesdispersionsin delay, frequency and spatial domains,
and ead antenna receivesan in nit y of di erent versionsof the transmitted signals,ead having
a di erent attenuation, phaseand propagation delay.

The main channel parametersare the coherenceime and bandwidth. If the signalbandwidth
is larger than the channel coherencebandwidth, a frequency sdectivity is experienced. In this
case,the multipath spreadof the channelis longer than the signal time period and inter-symbol
interference (I1SI) is experiencedafter the channel digitalization. Sometechniques such as Or-
thogonal Frequency Division Multiplex (OFDM) are usedto spreadthe signal in the frequency
domain and absorbthe ISI. Without 1SI, all the transmitted energyis collected with a matched
Iter into a single coe cien t called fading. The paths summation provides a random variable,
supposedto be complex Gaussianthanks to the certral limit theorem.

The antennasare supposedto be su cien tly separatedto obsene very di erent path con gu-
rations, which lead to independert random variables. Finally, the systemmodel is the following:
ead equivalert path betweenead transmit and receive antenna experiencesa complex Gaussian
attenuation of zero mean and unit variance (N¢(0; 1)), as shown on Fig. 1.2.

When the channel coherencetime is small enough,the channelis said to be ergadic, i.e., the
random variables from onetime period to another are independent. This situation for example
occurs when a handset is moving fast or when an interleaver is used. If the coherencetime is
longerthan a frame transmissionlength, the channeldoesnot vary and is said to be quasi-static.
Howewer, we assumethat the channelrealizations are independert from frame to frame. Finally,
we considerthe caseof block fading channelswhere n. independert channel realizations occur
during a frame. An example of block fading channel is given by the frequency hoping over a
guasi-static channel, where the di erent frequenciesare separatedby more than the coherence
bandwidth.
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Figure 1.2: Non-frequency-selectie MIMO channel Model.

As a remark, the block fading channel model for a frame transmitted over L time periods
includesthe quasi-static channeln., = 1 and the ergadic channeln; = L.

1.2 State of the art in digita | communications for multiple an-
tenna channels

Channel coding techniques for MIMO channels,commonly known as space-timecoding can be
classi ed into four major categories: multi-dimensional trellis coded modulations, space-time
block coding, multilev el coding and bit-in terleaved coded modulations. Each technique will be
briey presened in the following.

1.2.1 Trellis coded modulations

A multi-dimensional trellis coded modulation (TCM) [80Q][75] is a bandwidth e cien t technique
that combines an error-correcting code and a modulation scheme. It includes Ungerboedk-
like coded modulations and the simple caseof a classicalcornvolutional code where ead trellis
transition is assaiated with one channel use. Trellis-based space-time codes provide diversity
and somecoding gain at additional encaling/decoding complexity. They usually perform better
than space-timeblock codes, but their optimization is much more complex. There is no way
to seart for good codesthat maximize the rank of certain codeword matrices, only few good
codes are known. We notice that an inner full rank code can be added to improve the BER
performancevia interleaving gain.

1.2.2 Space-time block codes

The space-timeblock codes (STBC) consist of the transmission of Rc:ng:s symbols over s time
periods and n; transmit antennas. The code rate is equal to Rc. Usually, the transmission
schemeis represerted by an n; s matrix whosecoe cien ts are linear combinations of the sym-
bols to be transmitted. The latency of space-timeblock coding is minimal comparedto other
techniques. The rst space-timecode was proposedby Alamouti [3] in 1998. It is designedfor
ny = 2 transmit antennas and an arbitrary number of receive antennas n, and it provides full
transmit diversity, i.e., the diversity order is ni:n,. Some generalization to higher number of
transmit antennas have been proposed, such as orthogonal and quasi-orthogonal designs(OD
and QOD) [76][45]. Initially , peoplethought that the rate had to be reducedin order to achieve
full transmit diversity but, recertly, full-rate full-div ersity space-timecodeshave beenproposed
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for more transmit antennas [6][24][25][26][27][29][62)].

Many peopleare working on this topic that is having a fast and important progress. However,
the space-time block codes used alone do not provide su cien t coding gains. There are few
studies on the joint designof STBCs and error correcting codes, as proposedin Chapter 3.

1.2.3 Multilev el coding

Sincethe original work by Imai and Hirakawa [43][8€], it has beendemonstratedthat multilev el
coding (MLC) canbe applied to all typesof channels,i.e., scalarand vector channels. In MIMO
channels, di erent levels for coding are de ned on QAM symbols fed at the channel input or
directly on the binary labels of those symbols.

1.2.4 Bit interleaved coded modulation

Combining the original ideasby Zehavi [89][19], Berrou & Glavieux [8], a bit interleaved coded
modulation is built by cascadinga cornvolutional code, a pseudo-randominterleaver, a QAM
symbol mapper and the MIMO channel.

The main application of BICM to multiple antenna channelswasthe Bell Laboratorieslayered
space-time(BLAST). It wasinitially motivated by the capability of cancelingthe interferenceof
transmit antennasthanks to a greater number of receive antennas. Basically, independert data
streamsare transmitted over di erent transmit antennas. At the receiver, an ordered successie
interference cancellation is processedrom the strongestto the weakest data stream. The main
drawbadk of this initial versionof BLAST wasthe error propagation.

Of course, the concatenated nature of such a transmission scheme allows iterativ e joint
detection and decaling: The receiver starts by an APP detection of the multiple antenna channel
followed by a SISO decading of the convolutional code. The latter procedureis iterated a nite
number of times, where the convolutional code extrinsic probabilities are fed badk as a priori
information to the APP detector [14][72]. We will describe in detail the BICM structure and
optimize it in the aim of achieving good performanceon MIMO channels.

1.3 Informa tion theory for multiple antenna channels

Let usnow considersomeinformation theory toolsfor multiple antenna channels. The fundamen-
tal limits presened below are derived from Shannontheory [69] and extendedto multiple-input
multiple-output channels[77].

1.3.1 Information theory tools: a reminder

We will introduce the main information tools necessaryfor computing the fundamertal limits
of MIMO channels[23][5]:

Let Z and Y be two independent random variables. Their probability densities are p(z)
and p(y), respectively. The entropy H(Z) is de ned by

z
H(Z) = E[ log,(p(2))] = log, (p(2)) p(z)dz (1.1)

z
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where E[:] denotesthe mathematical expectation. The entropy H(Z) measuresthe neces-
sary binary information to describe the variable Z. The highestthe erntropy, the more the
randomnessof the variable.

The joint entropy H(Z;Y) of the two variablesZ and Y is de ned by
z
H(Z;Y) = E[ log,(p(z;y))] = log, (p(z;y)) p(z; y)dzdy 1.2)
zy
where p(z;y) is the joint probability density of z and y. It measuresthe necessarybinary
information to jointly describe the variablesZ and Y.

The conditional entropy H(YjZ) is de ned by
z
H(YjZ) = E[H(Y|Z = 2)] = E[ log, (p(yj2))] = log, (p(yjz)) p(yjz)dzdy (1.3)
zy
It measuresthe necessanpinary information to describe the variablesY having a knowl-
edgeon Z.

The mutual information | (Z;Y) betweenZ and Y is de ned by
[(Z;Y)=H(Z)+ H(Y) H(Y;Z)=H(Y) H(YjzZ)=H(Z) H(ZjY) (1.4)

It converselymeasureshe averagesupplemenary quartit y of information o ered by Y on
Z.

The capacity C of a discretememorylesschannelwith input Z and output Y isthe maximal
value of 1 (Z;Y) over all possibleprobability densitiesp(z):

C = max(1 (Z;Y)) (1.5)
p(2)

This inducesthat the capacity is obtained by optimizing the probability density function
at the channel input.

The capacity is linked to the system spectral e ciency by the Shannon'schannel coding
theorem. It is summedup in the following statemert: for a given channel, there exists a
code that allows error-free transmission acrossthe channel at a rate R, provided R C,
whereC is the channel capacity. Equivalertly, if the systemrate is xed, the capacity gives
a limit on the signal-to-noiseratio belonv which error-free transmission is not possible.
Since the capacity is a fundamertal non-achievable limit, it will be used as a reference
to measurethe quality of a given transmission system. This is why it is important to
compute the Shannon's capacity limit of a given system before the transmitter design
step. For example, the capacity of an additive white Gaussiannoise channel for a target

rate RisC = log, 1+ Rﬁ—g bits/complex dimensionand is obtained for Gaussianinputs.
The signal-to-noiseratio limit is obtained by ﬁ—g = % Using an in nitely good code
with quasi-ull rate, we obtain the limit limc, o2t =In2= 16dB.

Let us now describe the capacity limit for multiple antenna channels.
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1.3.2 Capacit y of ergodic MI MO channels

Let us rst considerthe caseof ergadic MIMO channels with n¢-dimensional input z and n;-
dimensional output y. The input-output relation is supposedto be:

y=2zH + (1.6)

where is an n,-dimensional Gaussiannoisevector with covariancematrix 2Nol, . Sud channel
capacity has beenexpressedin parallel in [77] and [32]. The capacity is achieved for Gaussian
input (more precisely for circularly symmetric complex Gaussian input, see[77]), it can be
computed by the expectation of the conditional C;; over all possibleH, where

P . . .
C=Ey Cy =En log, det In + n_tH H bits/complex dimension a.7)
and P = i[[zz ]] = MLs. Moreover, the capacity can be traced as a function of the bit error

rate, which is equalto % = 2I|E\|S . It canbedemonstratedthat ny n, MIMO channelscapacity
0 0

in bit‘complex dimensionis equalto n, n; MIMO channelscapacity.

On Fig. 1.3, MIMO channelscapacity are represened for n; and n, varying from 1 to 4. We
can obsene that for a given total number of transmit antennas n; + n,, the optimum reparti-
tion in the senseof capacity is obtained when ny = n,. We also obsene that the slope of the
asymptote is linked to min(n¢; n,) and that the vertical sliding is linked to max(n¢; n;). This is
explained asmin(n¢; n;) xes the number of equivalent sub-channelsand max(n¢; n;) the diver-
sity order on eadh sub-channel. If max(n¢; n,)=min(n¢; n,) grows to in nit y, the capacity tends
to min(n¢; Ny )Cawgn, Where Cawgn is the capacity of the additive white Gaussiannoise channel.

The Shannon's capacity is given by Gaussianinputs that are impractical. For a given in-
put law p(z) assaiated with an input Z, the mutual information | (Z;Y) represens another
fundamertal limit on the rate or signal-to-noiseratio. This limit is more restrictive than the
Shannon'sLimit and enablesto evaluate the modulation and preprocessingquality. Moreover,
we can evaluate the quality of the error correcting code and detection processmeasuring the
gap betweenthe mutual information and the real performance.

Assumethat Z 2 , adiscrete alphabet of M "t = 2™t vectors(e.gaM QAM ). We can
expressthe Entropies:

H(Y) = p(y)log(p(y))dy = p(y=2)p(z) log, p(y=2)p(z% dy (1.8)
y Yy z z0

X Z
H(Y=Z) = p(z)  p(y=2) log,(p(y=2))dy (1.9)

z y

The mutual information is given by

1(Z:Y) = H(Y) H(YjZ) = L X L | " oPy=) d 1.10
(Z:Y) = H(Y) H(YjZ) = mn; M yp(Y—X)ng Ty (1.10)

The integral over y reducesto an integral over H and . This mutual information doesnot exist
in a closedform expression,we can usea Monte-Carlo simulation to ewvaluate it.
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Figure 1.3: Shannon'scapacity for MIMO channels

We can obsenethat the mutual information saturatesto the spectral e ciency mn;. For low
signal-to-noiseratios, the mutual information hasthe behavior of the Gaussianinput capacity.
If n; tendsto innit y, the mutual information tends to min(C; mny).

In Fig. 1.4 we notice that the mutual information of al n, MIMO channel with QPSK
input saturatesto 2 bits per channel use. In Fig. 1.5 we notice that the mutual information of
al n; MIMO channelwith 16QAM input saturatesto 4 bits per channel use. In Fig. 1.6 the
mutual information ofa2 n, MIMO channelwith QPSK input saturatesto 4 bits per channel
use. This shows us that from an information theory point of view, if the spectral e ciency is
xed to mng, the best performanceis obtained by minimizing m and maximizing n;.

1.3.3 Outage probabilit y for block-fading MI MO channels

The conditional capacity Cy is a random variable with probability density pc,, (x). Over ergadic
channels, the capacity is the mean of Cy becausean in nite length codeword seesan in nite

number of channel states. However, whenthe channelis quasi-static, one codeword only seesone
channel realization. For a given channel matrix H, we deducean instantaneous capacity Cy .
Considera xed transmissionrate R. If R < Cy, there exists at least one code that provides
error-free transmission. Howewer, if R > Cy ewvery code would lead to a padket loss. Basedon
this obsenation, we can deducethat the capacity of quasi-static channelsis null. Indeed, for
a xed non-null R, there always exists a bad channel realization sud that R > Cy. We can
considerthe probability Py, that sudch outage situation occurs, i.e.,

Z R

Pout = P(Cy < R) = pc,, (x)dx (1.12)
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Figure 1.6: Mutual Information for QPSK input.

This outage probability givesa limit on the frame error rate only achievable with an in nitely
good code and Gaussianinput. We can obviously derive the outage probability with discrete
input from the mutual information 1y (Z;Y)

Pout = P(n(Z2; Y)<R) (1.12)
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When the channelis block fading with parameternc, we can multiplex the data without changing
the performance. We consideran equivalent quasi-static channel with block diagonal matrix

Hp = diag(H1;:::;Hp,) (1.13)

where all blocks are ny n, matrices corresponding to the n¢ dierent channel realizations.
Moreover, observingthat Hy, correspondsto ne channel uses,we have

1 P
Pout;nc = P n— |ng det Inrnc + n—Hbe <R (114)
c t [
1 Xe P
= P = logydet In + —H H <R (1.15)
nc i=1 n[

The outage probability of a block fading MIMO channel is equal to the probability that the
averagedinstantaneouscapacity (over the n¢ realizations) is lower than the xed rate R. Clearly,
the more the number of di erent realizations n¢, the lower the outage probability. This induces
!
o1 X P 1
P I|m1 — log,det I,, + —H;H; <R =P(C<R)=1Iy4 C (R) x (1.16)

nC! + nc i=1 nt

where C 1(R) is the minimal signal-to-noisefor the existenceof error-free rate R transmission
and Iy is the Heaviside step function. Fig. 1.7 shows the outage probability for a single antenna
block fading channelwith n; blocks for a rate equalto 1 and Gaussianinput. The capacity limit
for R = 1 bit per channel useis 0:96 dB.
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Figure 1.7: Outage probability, R = 1 bit per channeluse,1 1 MIMO channel.
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1.3.4 Div ersity-multiplexing tradeo

We will presert another fundamertal limit called diversity-multiplexing tradeo, preseried in
[90]. We canobsene from subsection1.3.2that asymptotic behavior of the capacity of an ergadic
MIMO channelis

CNOI 0min(nt;nr)log2 (SNR) + O(1) (1.17)
where SNR = 2%150' The single antenna system behaves like log, (SNR), whereasthe capacity
of a MIMO channel grows linearly with log, (SNR), the linear factor min(ni;n,) is called the
multiplexing gain.

Consider a family of codes C. Assume that for ead signal-to-noiseratio value SNR =
Es=2Ng, a code C(SNR) 2 C with rate Rc(SNR) and error rate P(C(SNR)) is chosen. The
multiplexing gain r of such a family of codesis de ned by

_ Rc(SNR)
" oM Jog,SNR (1.18)

Notice that r=min(n¢;n;) Rc(SNR)=C(SNR) indicates how far the systemis operating from
the Shannonlimit.

The diversity gain is obtained by the asymptotic error exponert

" SNRI log, SNR

(1.19)

The multiplexing-div ersity tradeo (r;d) givesthe information about the optimality of a family
of codesfor very high data rates. However, it doesnot give any information on the coding gain.

For example, if we choosea code with a constart rate that achievesthe full-div ersity order
nyn,, the multiplexing-div ersity tradeo is (0; n¢n,). If a family of codeshas maximal multiplex-
ing gain, the data rates and the number of possiblecodewords respectively ewolveslinearly and
exponertially with the capacity, and the achievable diversity disminishes. This inducesthat the
best multiplexing-div ersity point for full-multiplexing is (n¢; 0).

There exists an optimal multiplexing-div ersity tradeo for any value of r, denotedd (r):
d()=(ne r)(n, r); 0 r min(ng;n) (1.20)

The optimal multiplexing-div ersity tradeo shows that the diversity and multiplexing gains
ewlve inversely from ead other. The extrema values are the full diversity gain d (0) = nin;
and the full multiplexing gainr = min(n¢;n;) for d= 0.

For block-fading channelswith n¢ blocks,the optimal tradeo d (r) is
d(r)=n¢(ne r)(n, r); 0 r min(ngny) (1.22)

Fig. 1.8illustrates the optimal diversity multiplexing tradeo for a4 n; quasi-static MIMO
channel. Again, we seehow the receive antenna increasesthe fundamental limit, which induces
a simpli cation of the transmission schemeoptimization. If n, tendsto in nit y, we approach the
ideal casewhen both maximal diversity and multiplexing gain are achieved. Next, in Fig. 1.9, we
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obsene the gain obtained with an increasingnumber of channel states n.. Fig. 1.11illustrates
the optimal multiplexing-div ersity tradeo for systemcon gurations having a maximal diversity
order ncngn; = 16. We obsene that advantaging the spatial diversity gives a better optimal
multiplexing-div ersity tradeo .
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Figure 1.8: Optimal rate-diversity tradeo for  Figure 1.9: Optimal rate-diversity tradeo for

n; = 4 quasi-static MIMO channels. 4 4 block fading MIMO channels.
16 I 16 \
n=n=1 —— n=1n=1n=16 ——
n=n=2 —x— =2 Nn=2N=4 —x—
n=n=3 —x— n=4n=4n=1 —x—
n=n=4 —a—
= =
.% 9 ,% 9
V] U]
2 2
@ @
g g
a a
4 4
1 1
0 1 2 3 4 0 1 2 3 4
Spatial Multiplexing gain r=R/log([SNR) Spatial Multiplexing gain r=R/log{SNR)

Figure 1.10: Optimal rate-diversity tradeo Figure 1.11: Optimal rate-diversity tradeo
for nt = n, and n.=1. for maximum diversity order 16.

1.3.5 Singleton bound for block fading channels

In most digital communication systems,a binary error correcting code is usedto protect the
information bits. This is the casefor BICM, which is the systemwe will focuson in this thesis
report.

In [46][47][60], the authors considerbounds on the diversity for the transmission of a binary
code on block fading channels. Let us considera binary code C of rate R¢ and length L ¢ coded
bits. The block fading channel is supposedto have nc independert blocks. The diversity is
upper-bounded by n¢ and the minimal Hamming distance of the binary code which is denoted
dy min - We will considerthe Euclidean code Gz that correspondsto the transmission of all the
codewords over the block fading channel. All the symbols transmitted on the sameblock are
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Figure 1.12: Singleton bound on the diversity order as a function of the rate of the error
correcting code and the number of blocks of a block-fading channel.

grouped into a hyper-symbol. The code G hasa length nc and an alphabet size2-cRc="c_ The
minimal Hamming distance betweentwo coderwords givesthe diversity d upper boundedby the
singleton bound of the code Gz [46][47][60]:

d 1+bne(1 Ro)c (1.22)

Fig. 1.12 draws the singleton bound valuesfor a single antenna channel and an increasing
number of blocks n¢. The full diversity is achievedif and only if Rc  1=n.. In the following, we
will considerthe singleton bound assumingthat a detector perfectly corverts ann; n, MIMO
block fading channel with n; blocks into a1 n, block fading channel with n¢n¢ blocks. The
singleton bound will give the maximum acdhievable diversity for a given code rate Rc.

Conclusions

We have presernied the multiple antenna block fading channel model. We saw that the channel
capacity (or outage probability) givesthe fundamental SNR limit for high performance. Fur-
thermore, we described the optimal multiplexing diversity tradeo which givesan information
on the quality of a transmission schemefor very high data rates. The two fundamertal limits are
enhancedby increasingthe number of receive antennas. Moreover, we deducedthat the spatial
transmit diversity is preferableto time diversity in terms of information theory.
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Chapter 2

BICM model and performance

I ntro duction

The growing importance of iterativ e and probabilistic processingof information in communi-
cation systemsduring the last decade allows for exceptional performance on dierent types
of data transmission channels. Graph codes for binary channels have been extensiwely ana-
lyzed [10][44][51][52][56][67][68] and bit-in terleaved coded modulations (BICM) for non-binary
channels becamea widely known standard technique for coded modulations with and without
frequency selective channels [89][19][14][49]. Under realistic conditions and without any mild
theoretical constraint, the nature of such concatenatedsystemsdoesnot allow for the derivation
of closed-formexpressionsfor the error rate versusthe number of decading iterations.

This chapter rst describesthe bit interleaved coded modulation (BICM) transmitter scheme
applied to multiple antenna channels. Then the BICM iterativ e receiver will be described and
the\a posteriori probability” (APP) exhaustive detector detailed. A new exact computation of
the codeword pairwise error probability will then be introducedin the perfect interleaving con-
text. A union bound can then be computed to estimate the asymptotic performancewhen the
channel is ergodic and the interleaving ideal. For block-fading channels, the tangential sphere
bound is modi ed using the new exact pairwise error probability.

Moreover, an analogy betweenBICM with iterativ e joint detection and decaling performance
and the maximum likelihood decading performanceis developed. This analogy is available when
the channel interleaving is ideal and when the signalto noiseratio is su cien tly high to achieve
a perfect cornvergenceof the iterativ e processing.

2.1 Bit Interleaved Coded Mo dulation with itera tive decoding

2.1.1 Structure of the Bit-l nterlea ved Coded Mo dulation transmitter

The transmitter schemeis given by the following fundamertal block concatenation: A binary
error-correcting code C (e.g., a convolutional code) followed by a deterministic interleaver , a
symbol mapper (e.g., QAM modulation), afull-rate space-timespreaderS (i.e., alinear precoder)
and a serial-to-parallel corverter. Fig. 2.1 illustrates the BICM transmitter structure. We will
now describe the notations and the role of ead fundamertal block.
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Figure 2.1: Bit-in terleaved coded multiple antenna transmitter.

a) The error corr ecting code:

The transmission of digital data with the minimum error rate is the objective of any telecom-
munication system. In many of those systems,the data rate is forfeited to binary protection by
the way of an error correcting code. Let R¢ denote the coding rate of the error correcting code
C and b the information word at the encader input. The encader applies the bijection between
the input information word b and the codeword ¢ 2 C. The length of c is 1=R¢ times higher
than the length of b. We can choosethe error correcting code among a wide variety containing
the following non-exhaustiwe list:

Linear block codes: cyclic or non-cyclic linear block codes (BCH, Reed-Solomon). They
have beendeweloped in the 60-70'sand usedfor high rate systems.

Trellis codes: non-recursive non-systematic convolutional (NRNSC ) codes, recursive sys-
tematic corvolutional (RSC) codes.

Traditionally, convolutional codesare consideredfor BICM. Indeed, they have the double
advantage of having simple and low complexity encalers, maximum likelihood (ML) and
soft-input soft-output (SISO) decalers. Indeed, the code can be represertied by a trellis,
and the Viterbi algorithm [82][33] with Hamming distance (de ned on the Galois eld
GF (2")) can be applied for maximum likelihood decading. The trellis structure can also
be exploited for SISO decaling via the forward-badckward algorithm [4]. A corvolutional
code by default has an in nite length. However, nite linear block codes can easily be
extracted selectinga nite window of the trellis. A coding gain enhancemen is obtained
by forcing the rst and last statesto O, but this introducesa slight code rate reduction.

bits by trellis transition. The constraint length of the code is denoted|¢, and the codeword
length is LcN¢ coded bits. The coderate is Rc= [Ke  (Ic  1)=L¢]=N¢, but we consider
Lc  lc which leadsto Rc' Kc=Nc. As a remark, NRNSC codes have a slight coding
advantage when comparedto RSC codeswith the samecoding rate.

Concatenated codes: concatenated codes have been discovered in the 60's [35][34]. We
generally distinguish the turb o-cades from low density parity chedk (LDPC) codes. The
turb o-codes are basedon the serial or parallel concatenation of two convolutional codes,
the revolutionary papers [8][9][7] gave birth to the iterativ e decading techniques of con-
catenated codes. The LDPCs [35][58][59] are basedon multiple simple parity equations
grouped into sparsematrices. A factor graph can be constructed for the iterativ e decading,
basedon messagepassingbetweenthe multiple parity chedk nodes[51].
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b) The channel int erleaver:

The interleaver  scrambles the LcN¢ coded bits. This is the main componernt of the BICM.
It is crucial when performing iterativ e joint detection and decaling becauseit enhancesthe
independencebetween extrinsic and a priori probabilities both in the soft-input soft-output
detector and decdder. It is alsovery important for ML decaling (if such a decaling is tractable)
becauseit limits the interferencein the sametime period betweentwo erroneousbits of an
error evert. The interleaver can be a pseudo-random(PR interleaver) or a semi-deterministic
interleaver with somedeterministic constraints as described in Section 3.4.

c) The symbol mapper:

The interleaved coded bits are demultiplexed into blocks of m bits fed to the mapper that con-
verts them into a constellation symbol. The bijection betweenthe bit vectors and constellation
symbols is called mapping or labeling. The number of points in the constellation is equal to
M = 2™M. At ead channeluse,the mapper readsm n; coded bits and generatesn; modulation
symbols. To make the reading easier,the ni-dimensionalconstellation  will equally make refer-
enceto the set of symbols or their binary labelings. The mapping is not unique and can be very
in uent on the system'sperformance. The Gray mapping is one of the most famous, asit mini-
mizesthe number of di erent bits betweentwo neighbors in the constellation, which minimizes
the bit error rate of an uncoded system. We will seein this thesisreport that in many caseswe
can adhieve better performanceby using other mapping technigues, and even demonstrate that
the Gray mapping is the worst for BICM with ideal interleaving. All along this thesisreport, we
will consider QAM (Quadrature Amplitude Modulations) as they achieve a good compromise
betweenspectral e ciency (in bits/s/Hz or bits/dim) and performance. Moreover, they give a
lattice constellation structure to the systemand the accessto the lattice theory toolbox, both
for the transmitter and receiver optimizations. If a M -QAM is usedon ead transmit antenna,
the transmitted symbol energy per transmit antenna is equal to:

Es=2——— 2.1
s= 20 @1

d) The line ar precoder:

The linear precaoder S spreadsthe QAM symbols over s time periods. It corverts the ny ! n;
vector channelinto an Nt ! N, vector channel,whereN{ = ny sandN, = n, s. TheN{ N,

symbols transmitted during s time periods. The role of S is to spreadthe transmitted symbols
over more channel states, for example exploiting a time or spacediversity. We supposethat S
is normalized, soit doesnot act asan ampli er. This is satis ed if the Frobenius norm k:kg of
Sis equalto Ny:
X Xt
kSke = St = Ny (2.2)
i=1 j=1

e) Channel input -out put relation:

Without space-timespreading(s = 1 and S is the identit y matrix), the channel path connecting
antennai to antennaj hasa complex Gaussiandistributed gain hjj , whereH = [h; ], E[hjj ] = O,
E[jhjj?=1,i= 1:::nf andj = 1:::n;. Here, the symbol E[:] denotesmathematical expecta-
tion. The MIMO channel coe cien ts h; are supposedto be statistically independen. Denote




18 BICM model and performance

H the set of channel realizations seenduring the transmission of a codeword.

When space-timespreadingis applied (s > 1), we usethe samenotation for the extended
Nt N, channel matrix
H = diagf v Hy sH2i s He it Hnes il Hing
M Lk A R Lk AR S A CAMC (2.3)
S=N¢;s

In the above extendedblock diagonalmatrix H, Hy isann; n, MIMO matrix corresponding to
one channel useat the time period indexed by t. The index n¢.s denotesthe number of channel
realizations in the matrix H spreadby S. For simplicity, we supposethat n is divided by ncs.
In this case,the linear precading converts the ny  n, MIMO n¢-block fading channel into an
N: N; MIMO n¢=ncs-block fading channel. If a full time spreadingis processedngs = n¢. If
Nes = 1, the precader seesa quasi-static ny  n, MIMO channel.

Now, we can write the channel input-output relation:

y=Xx+ = 2zSH + (2.4)

wherey 2 CNr and ead receive antenna is perturbed by an additive white complex Gaussian
noise j,j = 1:::N;, with zeromeanand variance 2No.

This input-output relation is available for any time period. Howe\er, if we considerdi erent
time periods at the sametime, a temporal index k should be introduced. We have chosenthe
corvertion that when matrices have multiple indices, the index k correspondsto the number of
the time period. In this casethe input-output relation and block diagonal matrix becomes

Yk = Xkt k= zZSHy+ « (2.5)
Hy v Hks Hiezs i Hk2 10 Hiengs 5 15 Hienes O (2.6)

I
Q
D

Q
=k
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z

In the following, if a single time period is considered,the index k will not be omitted and
the \time period" or \channel use" will make referenceto a transmission over SH, i.e., over s
time periods.

The global spectral e ciency is Rc m n; bits per channel use. We consider a binary
signal-to-noiseratio (E,=Ng) at the receiver, where Ey, is the band-passinformation bit energyat
the receiwer, E. is the band-passcoded bit energyat the receiver and No=2 the noiseband-pass
spectral density. In the caseof M-QAM, we have

Eb _ EC _ Esnr _ nr (Zm 1)

= = 2.7
No NoRC ZNoRCm 3N0Rcm ( )

Usually, we considerthe logarithmic signal-to-noiseratio SN R = 10log; ﬁ—g in decibels (dB).

f) The global Euclide an code Cg:

The concatenation of the binary error correcting code C, the interleaver , the mapper , the
linear precoder S and the channel describes a global Euclidean code. If we supposethat the
error correcting code has a length LcN¢ and a rate Rc = K =N, the global Euclidean code Gz
converts L cK ¢ information bits into a complex L cNc=m-dimensional point.
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2.1.2 Structure of the iterativ e receiver

An ideal receiver for a BICM would directly perform a maximum likelihood decading on the
set of transmitted codewords Gz, but there is no other way than doing exhaustive decaling
of the 2Xckc codewords, which is intractable. All the existing receivers use the concatenated
structure of the BICM to separatethe reception into seweral steps. In this thesis report, we
do not considerthe syndironization and channel estimation processing,as we assumethey are
perfect. Basically, our receiver is now separatedinto two steps: the detection which consistsof
converting the received points y into information on the coded bits ¢, and decading the coded
bits & into estimations of the information bits B. The di erences betweenall possiblereceivers
depend essetially on the hardnessor softnessof the excnangedinformation. The detector has
always a soft input vy.

a) The decoder

Decading of an error correcting code has always been a topic of interest for a wide population
of researters. Obviously, the decader existencedependson the code nature. For example, we
cannot always processsoft-input soft-output of error correcting codes. We can describe the state
of the art of the most useful decaders for somefamilies of error correcting codes:

Algebraic decalers: for algebraic codes (RS, BCH), there exist many HIHO algebraic
decalers, the most e cien t being proposedin [73]. SIHO decading of algebraic codeshave
beenaddressedin [48], but SISO decaling is still an open problem.

Decaders for trellis codes: HIHO and SIHO , e.g., Viterbi algorithm (VA) [82][33]. SISO,
e.g., Soft Output Viterbi algorithm (SOVA) [38], forward-backward (FB) [4]. The forward-
badkward algorithm computesthe exact a posteriori probability (APP) using the trellis
structure of the code. A trellis is a particular caseof a graph, the forward-backward is a
particular caseof graph decaing.

Iterativ e decaders: if the constituent codesof a concatenatedsdhemehave SISO decalers
(e.g., turb o-cades [8][9]), an iterativ e decading can be performed exchanging extrinsic
probabilities betweenthe SISO decaders. However, a code can directly be constructed as
a graph structure [51], and decaled by messagepassingon the graph.

b) The APP detector

There exists many kinds of SIHO or SISO detectors for multiple antenna channels. Hard output
detectors nd estimate 22 for ead transmit antenna and time period, the symbols are then
cornverted into bits thanks to a de-mapper, de-interleaved and givento the input of a hard input
decaler. We can list the most current hard output detectors:

Sub-optimal hard output decaders: an estimation of the transmitted symbols 2 can be
obtained by linear equalizersfollowed by a hard decision(e.g., Zero-Forcing (ZF), Minimum
Mean Square Error (MMSE)) or non-linear equalizers(e.g., Decision Feedba& Equalizer
(DFE)). They do not provide near optimum performanceon MIMO channels,even at high
signal-to-noise ratios. Indeed, such equalizer decision regions are an homothecy of the
equivalent lattice fundamertal parallelotope (volume de ned by the basis vectors). The
Voronoi region is a homothecy of the fundamental parallelotope only if the lattice basisis
orthogonal, which is not the casefor MIMO channels.
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Maximum likelihood hard output decdaders: the maximum likelihood point zy . can be
found using exhaustive decalers or non-exhaustive algorithms sud as sphere decaers
(this algorithm is fully describedin Section 4.2).

However, the separateddetection and decading processis sub-optimal in terms of global max-
imum likelihood criterion. Supposethat the detector nds the maximum likelihood points from
the transmitted points, which is equivalent to nding all the maximum likelihood n{-dimensional
transmitted points for ead time period. Moreover, supposethat the decader nds the maxi-
mum likelihood codeword from the coded bits vector given by the detector. Even with thesetwo
conditions, the receiver does not achieve the global maximum likelihood performance. Indeed,
the global code G= contains 2K clc codewords whereasthe hard output detector nds the maxi-
mum likelihood vector in a set of 2Ncbc vectors, considering non-existing points which misleads
the decader. As already said, the ideal but intractable receiver should directly decade G=. An-
other solution is to perform iterativ e joint detection and decading thanks to iterativ e processing.

Code
Structure
| l
l APPs of :|: Decoded
> >
SISO SISO Decoder | info. bits bits
Detector
y (c) . for the error
— » De-interleaver —»
Likelihood correcting code | Extrinsics of
Computation + -
Marginalization coded bit

(c)

iter=0
05 /

. iter>0 Interleaver]

Figure 2.2: Iterative APP detection and decading receiver.

The receiver has two main elemerns as described in Fig. 2.2: An APP QAM-detector that
acts as a soft output equalizerfor both the space-timespreaderand the MIMO channel, and a
SISO decder for C. An iterativ e joint detection and decading processis basedon the exchange
of soft valuesbetweenthe SISO QAM-detector and the SISO cornvolutional decader. The SISO
detector computesthe extrinsic probabilities (c') thanks to the conditional likelihoods p(y=2)
and the a priori probabilities (c) fed badk from the SISO decader. At the rst iteration,
no information is available at the detector input, soit equally considersall the constellation
points and gives probabilities on the coded bits to the SISO decader. Through the iterations,
the a priori probability of the constellation points computed from the probabilities given by the
SISO decader becomesmore or lessreliable. If an ideal convergenceis achieved, near maximum
likelihood performanceis achieved. This technique requires a SISO detector that converts the
received vector y of eat time period into extrinsic probabilities on the coded bits (c') thanks
to a priori probabilities on the coded bits (¢). We can list some SISO detectors for MIMO
channels:

exhaustive APP detectors, list APP detectors (seeSection 4.3).
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SISO MMSE (seeSection4.4)

Serial Interference Cancellation, Parallel Interference Cancellation detectors (from mul-
tiuser detection theory).

We will now describe the optimal APP detector basedon a marginalization over an exhaustive
list. When the spectral e ciency istoo high, sucth a detector becomesntractable. The complex-
ity reduction of such a caseis treated in Section 4.3. However, we needto describe the optimal
detector for the performancecomputation and system performanceoptimizations.

The detector independertly computes the soft outputs on ead time period, the following
APP probability expressionis available for any coded bit ¢ of any time period. The received
point during the consideredtime period is y. The APP probability of a coded bit ¢ is de ned
by the probability to detect the bit conditioned on the obsenation of y:

p(y=c)p(c)

APP(e) = plo=y) = B

(2.8)

In the above expression,we seethat AP P (c') can be expressedas a function of di erent quan-
tities.

At ead new detection step, the probabilities given by the output of the SISO decader are
independert from the received point y. They are called a priori probabilities on the coded
bits ¢:  (¢) = p(c).

The probability p(y) dependson the transmitted coded bits, the a priori probability and
the AWGN, and is not computable. Fortunately, we will seethat this is not a necessary
quarntit y for the iterativ e processing.

The conditionned obsenation p(y=c) can be decomposedinto more explicit probabili-
ties. We use a marginalization over the set of labelings having the "-th bit equal to

c,c= fc;iierii6mn,9 2 ( ©), where ¢ corresponds to a transmitted vector z =
fzy;:::;zy,g and ltered vector x = zH = fx1;:::;XN, O
X X
p(y=c) = p(y;c=c) = p(y=c;c)p(c) (2.9)
c2(c) c2(c)

The condition over c;c is equivalent to a condition over all the modulation symbols vectors
z 2 ( ¢). Using the independenceof the receive antennas and the AWGN distribution,
we can write that

¥ 1 e
ply=c;c) = ply=x) =  p(yi=xi) = pZ—NOeJ y zSH[*=2No (2.10)
i=1

The coded bits transmitteddjuring the sametime period are supposedto be independert,
we have 8c2 ( ¢);p(c) = ", (c) which leadsto

X Y
p(y=c) = p(y=x) (c) (2.11)
x2 ( c) 6"
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Let us now considerthe information excdhangebetweenthe SISO decader and SISO detector.
The two blocks compute the APP probabilities combining the information they gather indepen-
dently (received point and modulation for the detector, trellis for the decader) and information
from the other block. The decaer givesa priori probabilities to the detector, this amourt of
information should not be given back to the decader in order to keepthe random variable inde-
pendence.The detector computesAPP(c) = (c¢) (c¢), with (c) and (c) two independert
variables, (c) is called extrinsic probability, givento the decaler soft input. Moreover, we have
APP(c)/ (c)p(y=c), and since (c) should be a probability, we can usethe normalization:

p(y=c = 1)
c) =
)= sy=c = 0+ piy=c = 1
Finally, the SISO APP detector computesthe extrinsic information, which correspondsto the

extrinsic probability that the “-th coded bit equals 1, as given in the following normalized
marginalization:

(2.12)

mn ! #
=] ky 2%H k> Q
z%2 (¢ =1) e 2No r6" (Cr)
(0) = P ky zSHKk?2 Q (213)
z2 € 2No ré° (Cf)

where is the Cartesian product (M -QAM)Nt, i.e., the set of all vectors z generatedby the
QAM mapper, j j= 2™Nt, The subset ( ¢ = 1) is restricted to the vectors z where the "-th
bit is equalto 1.

2.2 ldeally interleaved Bl CM exact pairwise error proba bilities

This section describes a very accurate computation of bit error rates and frame error rates of
BICM maximum likelihood performanceover MIMO channel with ideal interleaving. This new
technique is basedon the original computation of the exact pairwise error probability between
two codewords.

The digital communication systemsbecomemore and more complex to provide better per-
formance. This technical progressincreasesthe dicult y of theoretical analysis. The graph
iterative decaling introduced in the 1960's by R.G.Gallager was extended to many kinds of
iterativ e processingusing the concatenatedstructure. As examples,we can cite turb o-decaling
of concatenatedcodes, turb o-syndironization, turb o-equalization, joint turb o-detection and de-
coding of BICM.

If the signal-to-noiseratio is sucien tly high, the iterative processingcorvergesto near
maximum likelihood performance, which is particularly interesting when no maximum likeli-
hood decaling can be processed.However, theoretical analysis for iterativ e processingis very
dicult or in many casesimpossible.

In this thesisreport, we mainly consideriterativ e joint detection and decading of BICM over
multiple antenna channels. Heavy work has beenmade to estimate the frame error rate or bit
error rate of this system, in particular using Gaussianapproximations, but the exact pairwise
error probability has not beenpresened yet.
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Under the ideal interleaving condition, and when the MIMO channelis ergadic, we are able
to derive a closedform expressionof the Log Lik elihood Ratio density probabilities at the output
of the detector and a closedform expressionof the pairwise error probability at the output of the
decdler. It isthen very simple to usethe well known techniquesto estimate the bit error rate or
frame error rate of a coded modulation when the pairwise error probability is perfectly known.
This subject has beenfully discussedfor coded modulations over AWGN channels, where the
pairwise error probability is straightforward. As an example, we can cite the union bound of
the transfer function of a corvolutional code, or the more accurate tangertial spherebound. We
will then extend theseresults to the block fading MIMO channelswith linear precading.

2.2.1 Ideal interlea ving

The bit error rate (BER) or frame error rate (FER) of a coded modulation is often basedon the
pairwise error probability followed by an upper bound of the true performanceby a balanced
pairwise error probability summation. Each pairwise error probability considersthe Euclidean
distance betweentwo codewords generatedby an error evert of Hamming weight w. The ideal
interleaver is de ned asfollows:

Prop osition 1 For any pair of codewords, an ideal interleaver places the di e rent bits between
the two codewords in symtwols that will be transmitted on di e rent time periods, and equiprobably
distribute them over all the channd states (as much as the number of di e rent hits allows it).

The last condition comesfrom the following obsenation: Consider a chi-square distributed
fading channel, and assumethat ead Gaussiancomponert hasan arbitrary variance. The cod-
ing gain in the pairwise error probability is maximized if all the variancesare equal. This last
condition is approaded when the distribution of the number of erroneousbits over the channel
statesis uniform.

In practice, sud an interleaver could not exist. We will seein the following that the singleton
bound givesan existencecondition of the ideal interleaver. In Section 3.4, we presert optimized
interleaversthat approad the ideal condition.

2.2.2 Exact pairwise error probabilit y for ergodic channels

A tight upper bound on the pairwise error probability of error-free decading for a MIMO-BICM
hasbeengivenin [42]. It is basedon an integral expressionthat can be evaluated by the Gauss-
Chebyshev quadrature [19]. Here, we establish a closedform expressionfor the exact pairwise
error probability on ergodic MIMO channelsunder maximum likelihood decaling of the BICM
and ideal channel interleaving. The mapping designcriterion is directly derived from this pair-
wise error probability expressionas shawvn later in section3.1. Furthermore, tight union bounds
on both frame and bit error rates (FER and BER) will be preserted and usedto validate the
asymptotic signal to noiseratio gain for optimized mappings.

Consider two codewords X = X (c) 2 Ge and X%= X (c9 2 G= with a Hamming distance
w = dy (c; Y betweenthe corvolutional codewordscand c®. If we assumeideal channelinterleav-
ing, then the w di erence positions are spreadin spaceand time over w distinct transmission
periods. Clearly, the conditional pairwise error probability Py, (X ! X9 only depends on
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X 0= x9?;:::;x%g, where the componerts xi and x{ are points belongingto the set Hy.

Our aim in this sectionis to compute Py, (¢! ¢ = Enx [Pyw (c! c)]. The conditional
pairwise error probability Py (c! ¢9 is expressedas

P P
| 0 — | 0 — ‘le kyk xik?=2Ng E’: ky, x2k2=2Ng

For a given set of channel realizations H, a correct pairwise decisionis taken by the ML decdaer
when the log-likelihood ratio LLR is positive:
8

P w 2_ PW P
< _ =1 kyk xgk®=2Nog 4 kyk xPK2k yi xyk? _

LLR = log S —vooy, T S, = ke LR«

Pun(c! & = P(LLR<0)=P( };LLRx<O)
(2.15)

Thus,
z 0 z 0
Py ¢! & = E4[P(LLR < 0)] = Ex . PLLr (X)dx = ) P (X)dx (2.16)

where p_r (X) is the probability density function of LLR and pr(x) = En [pLLr (X)] is the
probability density function of LLR = Ey [LLR]. Wewill rst expressthe characteristic function

om( ) of LLR. SIBCG the w random variables LLR ¢ are independert and the channel is
ergadic, using LLR = =\, LLRk, we have

" #

- Y . Y .
e )= En LR, () = e ) (2.17)
k k

where IR, (G )=En. [ wr( )N and pr,(j ) isthe characteristic function of p.r, (X).

Two points areinvolvedin the expressionof the partial log-likelihood ratio LLR x: xx = zxHy
and xk = z“Hy, where Hy denotesan instance of the channel matrix setH at time period k.

As ideal interleaving is assumed,the point z; = zk is obtained by ipping the bit at position
“k in the binary labeling of zx (1 “x  mny). The squaredEuclidean distance betweenz, and

zZx is denotedd Zx zkk . The distance spectrum f dxg dependson the modulation type,

its sizeand its blnary labeling. For a given 2™-QAM modulation, non-equivalert labelings lead
to non-idertical bit error rate performances.

a) Char acterist ic funct ion of LLRg

First, we compute the characteristic function of LLR for a binary modulation (BSK) de ned
by two points fz; z*g transmitted over a MIMO channel. The expressionof LLR is:

1 . 2 1 .
LLRk_NO Yk ZSHik kyw zHkk? = N R+ 2< (zk  z)Hk (2.18)

where is the transpose conjugate and R is the squared norm of the vector (z zl;k)Hk.
If a classicalmono-dimensionalmapping is used independertly on ead transmit antenna, the
di erence vector z;  z* has only one non-null componert in the position given by b'y=mc.
Howewer, in order to stay in the general casewhich will be useful in the following, we do not
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N Kk
take any assumption on vector z,  z*. It be shawn that < MHk . is a Gaussian

noisewith zero mean and variance Ry=Ng. Moreover, since & &) )Hk includesn; independen
identically distributed complex Gaussianrandom variables Wlth zero mean and unit variance,
then Ry hasa Chi-square distribution of order 2n,.

(nr 1)e
Pr=( ) = TR (2.19)
First, notice that the random variable LLR  is Gaussiandistributed.
Rk Rk
LLR N —— 2.2
K 2No’ No (2.20)
The characteristic function of LLR is
R ()= E & HRe = exp SREG ) (2.21)
2Np
The mathematical expectation Eg, [:] over Ry is equivalent to the expectation over Hy. Thus,
8
5 or U ) = Ery [ LR (] )]n
d2 . r
: = 1 550G ) (2.22)
d?2 . .
- = ang( jald))( ji(dk))
where 8 q
< a(dg) = 3 1+ 1+ %o
q — (2.23)
d) = 31 1+ 8%
k

b) Char acterist ic funct ion of LLR
Let D denotethe set of all Euclidean distancesobtained by ipping onebit in the constellation

Dene theset =f 1;:::; n,g D from the sequenceg(ds;dy;:::;dyw)2 Y DY, e
the Euclidean distance dy takesits valuesfrom the set . The value nq is de ned asthe number
of di erent distancesoccuring in the sequence(dy; dy;:::;dy). It is clear thabnd =jj iDj.
Let the integer  denotethe frequencyof  in the sequencgdy;dp;:::;dw), ¢, k= wand

=f 15007 ng0.
Using (2.17), (2.22) and (2.23), the averagedcharacteristic function becomes
W Nr
iRl ) = my1+mmm1+um» (2.24)
k=1 | |
v M Y . -
= No [ +a(li +b(W) ™~ (2.25)
k=1 ! 0 k=1 1
W 2 M Y
= de @ [+ ] ™ KA (2.26)
k=1 0 k= ngk60

where the polesin the above product arede ned by -0 = a( ), k<o= b «).
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c) The LLR partial fraction expansion

To allow derivation of px(x), we now compute the partial fractions expansionof z( ).
A mathematical reminder about partial fraction expansionis described in Appendix C. The
characteristic function z(j ) canbe written as:

W @2 ™ X M5 iki
k

- ki
arl )= _k L — (2.27)
k=1 2NO k= ng;k60 i=1 (J + k)l
The coecients - in (2.27) can be exactly evaluated from the following identit y (seriesexpan-
sionin ):
n 1 _ Y n 1( 1) ™ kai’fi 1 _
e i FO(T )= Nrojig*i '+O(™ ) (2.28)
i=0 k= ng:k6:k60 =0 ( )

n _ n!
where | = CEAIE

From the simple propertiesa( k) 1=2=1=2 b( k) and (] 1=2)= gr( 1=2 | ),
we have i = ( 1)' ki. Hence,coecients . areonly evaluated for k > 0. Expression
(2.27) becomes

Yoo ReXE ki L (D

Y@ | _ 2.29
el ) ke 2No o1 iz G tat)' G+ b)) =2

d) Condit ional pairwise error probabilit y closed form expression
Finally, we get the probability density function of LLR = = [_, LLRy by the Fourier transform

Z+1 .
Pr®) = 5 ol de ! "d (2.30)
W ne X X K |
-1 Mo G Lical )+ ( Db Q) (231)
2 k=1 dk k=1 i=1

and the function 1;(x; a( k)) is de ned by

(X)il

li(xia( ) = (=52 sgn@( ) M H( snal ))x) (2.32)
Indeed, we have
n 1
060 0) = 51 20680 W) = (Pt a o) (233)
and
Z +1 el X
li(x;a( k) = . md = 2 sgn(a( ))& *H( sgn(a( k))x)

where sgn(x) is the sign function, and H is the Heaviside step function.
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R
Using § 1i(x; b k))dx = 0and

1

ZO ZO 1
! a( k)’

(X = %a(k)x -
Ii(x;a( x))dx =2 LG l)_e dx =2

(2.34)

R
the conditional pairwise error probability is Py(c! ¢9 = cl) Prr (X)dx which yields the closed
form expression

Nl INq N Xd Xk .
Pu(c! Y=Py( ;) = = a("")i (2.35)
k=1 Kk k=1 i=1 k
e) Expectation over the set of distances
All sequencegds;:::;dy) corresponding to the same( ;) Yyield the samepairwise error prob-

ability. We have expressedthe pairwise error probability betweentwo given codewords ¢ and
c® such that dy (c;c® = w and the transmission of ¢ c®is characterizedby ( ;). We now
have to averagethis probability over all possiblepairs (c;c9. First, let us considerthe averaged
pairwise error probability P, conditioned on dy (c;c9 = w:

Pw = E¢;gw Pw(c! ) = Eccgw [Pw( )] (2.36)

Averaging over the pairs (c;c9 is equivalent to 6veraging over ( ;) thanks to the inter-
leaver. Each pair ( ;) is represenative of w!= i”;’l il equivalert pairs (Z;29, where the
w-dimensional Z and Z° vectors are the channelinputs leadingto X and X ©, respectively. As a
pair (Z;Z9 correspondsto a high number of pairs (c;c%, the complexity of a numerical evaluation

is dramatically reducedin practice by performing expectation over and :

Pw=E . jwlPw( ;)I (2.37)

f) Asympt otic expression of the pairwise error probabilit y

We can compute the asymptotic expressionwhen the noiselevel is low. Indeed, the coding gain
and diversity are measuredfor high signal-to-noiseratios, where the performancehave a linear
asymptote on logarithmic scales.
" n # wn
2nfw 1 Y 2N0 ' 2npw 1 2N0 '

Epw — = 2.38
D d& nrw Gbrgo ( )

w nrw
No! O r
0 k=1

The diversity assaiated with the consideredpairs of Hamming weight w is the exponert equal
to wn,. The diversity is de ned by the exponert of Ng, we can de ne the coding gain or coding
advantage by the coe cien t dividing Ny, i.e.

n # n #
1 1 1 1
— = Epw ——— = E 2.39
Gt\g'?;ro b din' w Ggrrgo b dinr ( )

As a remark, the distancesassaiated to di erent valuesof k are independart.
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2.2.3 Exact pairwise error probabilit y for Blo ck Fading MI MO channels

In section2.2.2we computed the exact pairwise error probability of an ideally interleaved BICM
over ergadic MIMO channels. We will now expressthe same pairwise error probability for
block fading MIMO channels. We assumethat proposition 1 is satised. Assume that the
number of independert channel realizations in a frame is h.. We usethe previously introduced

transmitted codewords ¢ and c® (we considerdy (c;c) = w). The involved channel matrices are
not independert asfor an ergadic channel. the conditions of independenceare the following

If two LLR random variables depend on two di erent channel realizations, they are inde-
pendert.

If two LLR random variables depend on the same channel realization but on dierent
transmit antennas, the random variables are independert.

The maximum number of independert LLR variables is n¢n{, which de nes the transmit
diversity order. We will call\channel state" the 1 n, SIMO channel assaiated to one of the
n; transmit antennas of one of the n. channel realizations. We choosethe error correcting code
sothat w n¢nc.

We now group the w random variables LLR into min(n{n¢; w) = n¢n; independert blocks.
Let LLR ;i be the i-th log-likelihood ratio corresponding to the BSK transmission on the [-th
antenna of the k-th block, k= 1:::n¢, I = 1:::nfandi = 1::: kp thf,e k:1 is the number of

bits transmitted on the I-th antenna of the k-th block. We have, & |Y; ki = w. Finally,

LLR is the sum of n¢n¢ independert random variablesLLR;; = ;X LLR ;i
Xe Xt Xl
LLR = LLR K;l:i (2.40)
k=1 =1 i=1

P . .
Let di;.; denotethe distance asswiated with LLR.;;, and de ne f;l = M dﬁ;l;i the distance
asswiated to LLR ;. We have

R Rt
2No’ No

where Ry = 2,kHy(1)k? and Hy(l) is the I-th row of Hy. For all i, LLR . are transmitted
over the equivaiert 1 n, SIMO channel de ned by Hg(l), which is chi-square distributed
with degree2n,. The LLR; variables are transmited on independert channel states, as for
the ergadic channel case, we directly apply (2.35) and obtain the conditional pairwise error
probability closed-formexpression

LLRy; N (2.41)

|
Yo Yoo ooy, CRe X

Pu(X ! X9 =Py( ;) = —5 —n;ii (2.42)
k=1 I=1 kil n=1 i=1 a( n)
where , 2 , and ( ;) is the pair of setsrepresening the sequence il;:::; ﬁt;nc . The

ni COe cien ts are computed thanks to the straightforward application of (2.28).

Then, an expectation over ( ;) leadsto Py, the averagedpairwise error probability con-

ditioned on dy (c;c) = w. The asymptotic expressionof Py, is
" I

Ye¥ aNg

nr

e 1op (2.43)

w
No! O Ny NtN¢ 2
° k=11=1 kil
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The diversity assaiated with the consideredpairs of Hamming weight w is then equal to the
exponert n{ncn,. The coding gain is given by the expectation of the f;, geometricmeanand is
equalto 2 | 3

Ye Yoo X S

G,""" = Epw 4 dZ. 5 (2.44)

k=11=1 =1
We will seein the following how to use this coding gain as a design criterion for the ST-
BICM optimization. We now consideran equivalent computation of the coding gain for a linear
precoded ST-BICM.

2.2.4 Exact pairwise error probabilit y with linear precoding

When a linear precader S of sizeN; Ny is used(N; = sny), the detector computessoft outputs
on the N transmitted symbols and considersthe equivalert channel matrix SHy of sizeN; N;.
Under the ideal interleaving condition, we considerat most a single erroneousbit per block of
s time periods in position 1~ mN; inside the binary mapping of the transmitted symbol
z, leading to symbol z . For simplicity reasons,we assumethat the error weight w satis es
W  Nin¢=ncs.

Assumethat ncs is a divisor of n.. Consider the block-diagonal matrix of size Ny  N;.
Assumethat Hy contains n.s distinct channel realizations amongthe s blocks of sizeny n; .
The channel input-output relation is

Yk = ZkSHg + (2.45)

where SHy can be seenin generalasa correlated fading channel [81]. All LLR random variables
assciated with a transmissionon the k-th block experiencethe samechannel matrix. Hence,we
can apply a factorization of the correlated LLRs asin 2.2.3. Assumethat a mono-dimensional
mapping is used, the BSKs are transmitted on a single selectedinput of the matrix SH. Let
LLR . bethei-th LLR among ;. transmitted on the I-th row of the k-th block channel matrix

SHy. The denition of iy gives ;5,5 NY i = w. Let dyy; denotethe BSK distance
betweenthe two points zy.; and Z asswiated to LLR ;. Let S; denote the |-th row of S,
we have k(z: zl‘(;l;i)SHkk2 = dZ,.;kSiH¢k?. The LLRy; assaiated with the factorization of
[-th row inputs of Hy satis es

Rk:1 . Rk

LLR k- N —— 2.46
kil Ny’ No (2.46)

P .. . . .

where Ry = KVigHkk?, Vil = 1S and 2, = X d&2,;. The variable Ry, is a generalized

chi-square randora variable with 2N, correlated certered Gaussiancomponerts. The random
variable LLR = Y LLRy; satis es

|
P, P

"R N R
LLRxy N B 2.47
K NG No (2.47)
We will rst considernc.s = 1 and extend the result to any value of nc.s.
a) The precoding matrix sees one channel realizat ion (n¢s = 1)
For n¢.s = 1, the quasi-static channel matrix Hy is de ned asHy = diag HE][”; i HE][S] .

Let the row vector SI[” denotethe i-th sub-part of sizen; extracted from the |-th row of S. We
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construct the s n; matrix S°whoserows are the s sub-parts Sl[i]. Using the samemethod, we
decomposeVy; into the s ny matrix V2 = ;S

0 o 1 0 o 1
[2] [2]
S S

s= gthisH sP:% ': gandvko;l: ";'% ': E (2.48)
SI[S] SI[S]

De ne h; the i-th column of HE][”, the n; vectorsh; areindependert realizationsofan; 1
MISO channel. We want to expressthe characteristic function of the random variable

|
)@t )Qr )@t )Qr )Qr ’
Ry = hy VO, Vaahi = hi M Myh; = tr Mhih, M (2.49)
1=1 i=1 1=1 i=1 i=1

where My isan ny n; Hermitian squareroot matrix of

Xt
k= ViV =U Uu ) Mc=Mg=U P U (2.50)
=1

where | = diag(#:1;:::;#kn, ), #k:i iIsthei-th real eigervalueof ¢ and U is a unitary matrix.

P
The random variable i”:fl Mghih; M, hasa Wishart distribution wih n, degreesof freedom
and parameter matrix . The characteristic function of the trace of  ; Myhih; M, is given
in [61]:

. P,
(i Ytr( 2y Mghihy M)

Bue [ wrye( )l = En, exp 5 No (2.51)
g ) A
= det( y)det * TOl (2.52)
Yt . nr
- 1 0Dy (2.53)

i1 2N

where #,.; is the i-th real eigervalue of .

b) The precoding matrix sees nc.s channel realizat ions (n¢s > 1)
The channel matrix Hy precoded by S hass blocks. Assumethat the nc.s channel realizations
are repeatedby an integer number s=n..s times (i.e., n¢;s divides s). The matrix Hy is organized
as follows:

Hy = diag HE]l;:::;H[l] ;H|£2;]1;:::;H[2;]_ I HE:{;S]:::;H["“S] (2.54)

k;s=n¢s kis=nc:s

whereHE;]i denotesthe i-th block of the t-th channel obsenation, i.e., the ((t 1)s=ncs + i)-th
block in the matrix Hx. We rst decomposethe rows of S into n¢.s sub-parts of size Ny=ncs.

Let Sl[t] denote the t-th sub-part of the I-th row. Then, eadh sub-part Sl[t] is decomposedinto
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s sub-parts of size ny and de nes the rows of the s n; matrix Sqt]. The Ny N; precading
matrix S is divided with the following method

[1] _ [2] [ngs]
S (1 Ni=ng S S
2 5 | ( t c,S) 5 | 5 | 3

Sj[l_l][l] Sg.i][sinc;s ] ng][l] ng][sinc;s ] S:E_n ¢S ][1] Sg_n ¢S ][Sinc;s |
S= S£1][1] Sg J[s=ncs ] S£2][1] Sg 1[s=n¢s ] Sg]c;s 1111 Sgnc;s I[s=nc¢s]
S[i][ll [1][s=ncs ] [é][ll S[Z][S=nc;s ] [nc:S 111] [ngslis=ncs |

N N N N
[ 2.} Nz} TRes Nz} [z} Nz )

N{=s= n; coe cien ts

The s ng matrix S(ft] given by

2 3
Sl
[112]
S
st = § " % (2.55)
Sl[t][s.:nc;s ]

For all t, the sub-parts multiply di erent and independert channel realization matrices, which
allows us to multiply the characteristic functions assaiated with the sub-parts. Substituting
s by s=n¢s in the mathematical developmert preseried in the previous section and using the
independenceof the n¢.s channel realizations, we directly have

Nes it (i nr

. b )y

wrol )= 1 (2.56)

t=1 i=1 0

where#E;]i is the i-th eigenvalue of

X Xt SXes ,
E] =M lEt] M |£t] - S‘{t] Sdlt] = vOyO= I%;I S|[<t;]|[l] Sl[<t;]|[l] (2.57)

I=1 1=1 i=1

The set of eigervalues#E;]i is a function of the precoding matrix S and the BSK distancesset

reducedto the pair ( ;). The characteristic functions assa@iated with di erent indicesk can
be multiplied thanks to the channel realization independence:

- nc‘?nc;s '\t;s Wit (J ) it Ne
Lrol ) = 1 “oNL #ei (2.58)
k=1 t=1 i=1 0
Denote = f 2g the set of n non-null eigervalues extracted from the sequencede ned

by the #[kt;]i values. Each eigervalue 2 is repeated , times. Obsene that n n¢ny. Finally,
using the partial fraction expansionof | go(j ) asdescribedin (2.28), the exact pairwise error
probability P,, conditioned on dy (c;c% = w is equal to
) Y ne X X #
2Ng V' Y i
it v (2.59)
v v=l i=1 a( )

v=1
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The asymptotic expressionof P,, is

n #
¥ooong ™
2nr N 1 0
Puy o mn E 3 (2.60)

where N is the total number of non-null eigenvalues.
The (lﬂgversity assaiated with the consideredpairs of Hamming weight w is the exponernt
equalto !_, yn,. The coding gain is given by the , geometric meanand is equal to

v=1
n #
P ¥
G™ v V=E yaum (2.61)

We have derived an exact expressionof the pairwise error probabilities of a BICM with linear
precading. The expressionis exact for any SNR value, and the asymptotic expressionleadsto
the well known rank and determinant criterion for space-time code optimization over MIMO
block fading channels[75][30], where the consideredspace-timecode is the whole BICM struc-
ture. As aremark, the asymptotic designcriterion is usually derived by rst upperbounding the
Q(x) function by exp( x?=2)=2 and then averaging over the channel realizations. The obtained

asymptotic expressionhas a multiplying coe cient dierent from ann’r\lN L which is inexact
but provides the samecoding gain expression,which provesthat the design criterion proposed

in [75] are correct.

Moreover, we notice that applying the Tarokh [75 rank and determinant criterion to the
precoder alone doesnot lead to the whole BICM optimization. Quasi-optimal linear precaders
will be designedto acdhieve full diversity and optimal coding gain in Section 3.2. Moreover, we
now have the exact pairwise error probability expressionwhich is useful for a tight BER and
FER estimation.

2.3 Estima tion of the bit and frame error rates

The estimation of the frame error rate or bit error rate for coded systemsis not an easytask,
even for the basic AWGN channel. Indeed, the objective is to compute the probability that a
multi-dimensional additiv e white Gaussiannoisegetsout from anon-idernti ed multi-dimensional
polygon de ning the Voronoi region. Each polygon facet belongsto the mediator hyperplane of
two neighboring codewords. We will describe two methods for estimating the BER and FER of
ideal BICM over MIMO channels.

2.3.1 Union bound on ergodic channels

The frame error rate at the decader output FERYC is upper bounded by the classical union
bound 2 3

X
FERYc E 4 P(c! c)5 (2.62)
c®2C;c% c
The input-output weight distribution of the error correcting code Cis
Xt xt _ X1
A(l;D) = aiw!'DY and A(D)=A(1;D)= ayD" (2.63)

w=dymin | W= dH min
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wherea;; is the number of codewords with an output Hamming weight w and an input Hamming
weight i. We can now expressthe approximation of the maximum likelihood frame error rate
and bit error rate of the ideally interleaved BICM transmitted over a multiple antenna channel:

1 %1
FERYeC avP(c! 4dy(c;ch = w) = awPuw (2.64)

W= dH min W= dy min

where Py, is givenin 2.37for ergadic channels,or by the equivalent expressionsfor block fading
channels. Equivalertly, we have

X1 i
Kclc

BERYeC & wPw (2.65)

i W=dH min

where K cL ¢ is the number of information bits per codeword.

We can compute the asymptotic expressionwhen the noiselevel is low. Indeed, the coding
gain and diversity are measuredfor high signal-to-noiseratios, where the performance have a
linear asymptote on logarithmic scales.The asymptotic expressionof BERY® whenNg! 0is

n #
X1 . dpyhnin n
BERUYe SN 20 dumn 1 g 2No
No! 0 K L i :dH min Nr dy min d2
o Ty NCEC k=1 k

(2.66)

Indeed, the error everts with Hamming weight greater than dymin have higher diversity and
negligible contribution to the performancefor high signal-to-noiseratios.

The union bound (UB) for convolutional codesis known to be tight on AWGN channels.
Our experimental results shoved that the union bound provided by 2.37and 2.64is alsotight on
a MIMO ergadic channel. Indeed, it is well known that the union bound performanceis asymp-
totically (i.e, for a su cien tly high signal-to-noiseratio) a good approximation of cornvolutional
codes performanceon AWGN channelswith BPSK input. Indeed, there is a dominant term in
the sum and other terms are negligible for low noiselevels. We can obsene the tightnessof the
union bound for a 4-state convolutional code over AWGN channelswith BPSK input on Fig. 2.3.

In our case,the terms corresponding to the error evert with a weight equalto dy obsene a
diversity equalto n.dy. At high signal-to-noiseratios, the terms with dy > dymin are negligi-
ble. We can obsene the tightnessof the union bound of a 4-state convolutional code over 2 2
MIMO ergadic channelswith 16-QAM input and gray mapping on Fig. 2.4.

2.3.2 Tangential sphere bound on block fading channels

On ergadic MIMO channels,the union bound wastight becausethe higher diversity error everts
were neglected. When the channel is block-fading and under ideal interleaving and w  n¢n;
conditions, all error events have the samediversity for all w valuesand no one can be neglected.
The union bound is loosefor block fa ng channels becauseit takessomeerror everts into ac-
count that doesnot cortribute to the exact error rate. Thanks to the interleaver and the high
frame size, we can make the assumptionthat all the BICM codewords are transmitted on the
surfaceof a sphere. In this case,the Voronoi regionis a conewith polygonal section. On AWGN
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Figure 2.3: 1/2-rate RSC 7,5 corvolutional Figure 2.4: 1/2-rate RSC 7,5 (N¢cLc = 10000)
code (NcL¢c = 1000) , BPSK over AWGN , 16QAM, Gray mapping,2 2MIMO channel,
channel, Union Bound performance (UB) or  Union Bound performance(UB) or simulation
simulation (simu) (simu) for BER and FER

channels, we could considerthe tight tangertial spherebound that limits the union bound into
the conesurrounding the Voronoi region. The tangertial spherebound for AWGN channelsand
spherical constellationsis described in appendix A.

The main drawbadk of tangential spherebound is the choice of a judicious sphereradius.
Moreover, for block fading channels, the voronoi region has a random shape with the channel
realizations which makesthe tangential spherebound computation very di cult. If we assume
ideal interleaving and ideal coding gain, the Voronoi decisionregion for a given frame transmis-
sion is an expanded version of the Voronoi decisionregion over the AWGN channel. Indeed,
the w distancesinvolved in ead pairwise error probability are equal. We can rst compute
the optimal radius for the performanceof G= over the AWGN channel, compute the tangertial
spherebound and then apply the averaging over H which can be reducedto an averaging over
a chi-square distribution. In conclusion,the estimation of this ideal performanceis simple and
provides a lower bound for a given error correcting code. This lower bound might be usefull to
evaluate the optimization of the interleaver and of the linear precader.

2.4 Genie concept and performa nce

2.4.1 Principle

The geniemethod hasbeendescribed and intensively usedfor mapping optimization of a BICM
transmitted on a single antenna ergadic channel [20]. The main idea is to consider that for
a su cien tly high signal-to-noiseratio, the extrinsic probabilities becomevery reliable. When
processingthe detector output during atime period, the geniecondition is satis ed if the mN; a
priori probabilities are perfect,i.e (c) = c¢. In this case,the extrinsic probability computation
of the © th coded bit at the detector output is

ky zSH k2
e 2N

(c) = (2.67)

. 2
ky zSHk2 ky z sHk
e 2N + e 2N
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wherez and z have a0 or a 1 in the “-th position, respectively. We can obsene that only the
two points z and z are considered,they de ne a binary shift keying modulation (BSK). The
computation of a given extrinsic probability behaveslike LLR y computedon a singletime period,
and introducedin the ideal BICM ML performance. The BSKs obtained by ipping one bit on
the labeling are important to de ne the BICM geometrical behavior under perfect feedbak as-
sumption. This property canbe usedto designthe labeling, this will be discussedn Section][ref].

Howewer, the genie situation assumedfor the whole codeword is very optimistic, as it is
equivalent to an error-free scheme, which is impossible. That is why we only considerthe genie
at the detector and for a single time period decaling. This is a practical designconcept, not
a physical quantit y. However, we will seehow this simple designtool is equivalert to the more
complex maximum likelihood criterion.

2.4.2 Genie and maxim um lik eliho od analogy

An information bit sequencecoded into a codeword, interleaved and spread over antennas and
time periods, leadsto a point of Gz in a spacewith a number of dimensionsequalto the number
of receive antennastimes L cNc=mN¢, the indices of time periods corresponding to a codeword.
With the well-known ML criterion leadingto optimum performancein terms of Frame Error rate
(FER), we choosethe information bit sequenceaminimizing the distance betweenthe equivalent
point and the noisy received point.

If we considera low noiselevel, the error probability is quasi-rull and very dependert on the
distance betweenthe transmitted point and its neighbors. Indeed, the probability that the noise
resultsin a received point far from the transmitted point is very low. In this case,and assuming
convolutional encading, the codeword neighbors of the transmitted sequenceare given by simple
error paths. Ideally, the few di erent neighbor bits are separatedthanks to the interleaver. If
two or more of these bits are grouped in the sametime period, the generatedinterferencewill
degradethe performance. Therefore, the interleaver hasto be carefully designedto separatethe
erroneousbits onto di erent time periods. If this interleaver condition is satis ed, the distance
betweenthe transmitted point and its consideredneighbor is equal to the equivalent BSK dis-
tances sum. Averaging this remark on all the transmitted sequencesand all the simple error
paths leadsto a construction criterion which is very closeto the genie criterion. Indeed, the
geniemethod considersthe equivalert BSKs given by consideringall the transmitted bits on s
time periods.

On one hand, maximizing the distance betweentwo neighboring codewords is not su cien t
to optimize performance according to the ML criterion, since only considering two neighbors
corresponds to optimizing a ML performance lower bound. Nevertheless, experiments show
that performanceis mainly lead by neighbors. On the other hand, the genie performanceis
given by an ideal situation that newver exists in practice, so we minimize an inferior bound too.
We have shown here that the two optimization criteria given by approximated ML and genie
considerationsare quite equivalent, provided that the interleaver is well designed. However, the
genie performanceis easily computable at the detector output. It allows us to consideronly s
symbol periods instead of consideringthe whole codeword.
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2.4.3 Genie performance closed form expression at the detector output

We will apply 2.35to compute the genie performance BERY! at the output of the detector in
the caseof ergadic MIMO channels. Since only one time period is considered, the temporal
subscripts k are not necessary The expressionof the detector soft value, when the a priori is
fed badk by a genie, is given in 2.67. The bit error probability BER! is directly related to the
decisionmaking on (c). By conditioning on the channel state H and the transmitted QAM
vector z, we can write

BERFL =E-[P(j (c) cj 0:5) (2.68)

The symbol E-[:] denotesthe mathematical expectation over the position ~ of the coded bit.
Then, using 2.67 and 2.68, we can expressBER! as a function of the LLR of a BSK with
distanced = d(z;z‘), averagedover H, z and
h | h [
BERY!'= Ey,+ Py(z! z) = E,- d(z;z) (2.69)

where d(z;z = Ey Pu(z! z) . Wenoticethat the performanceunder the geniecondition
at the detector output, or equivalently at the decader input, is the average probability of the
j jmn; equivalent BSKs with distanced(z;z ) onann; n, MIMO channel. We can directly
compute the pairwise error probability from 2.35choosinghg =w=1,dy= ;=d, 1= 1
Finally, we just have to identify the coe cients i, from

1 1 1i ne +_i 1
i’ --1r;nr ii +0(1) = R n I+i--n i
=0 -0 ( R

+ O(1) (2.70)
1

using 1 1= 2%, we canwrite the closedform expressionof (d):

nr+k 1

@’ M k X ik 1 1 K 1 0o
@ = TR : &1
0 ko (1 1) 1 k=0 1 1 1 1
1 1 Nr X 1 0 1+ 1 1 k
1+8 Ng=d? +k 1 1+8 Ng=0?
= A Nr @—A
2 k 2 (2.72)
k=0
which is the result obtained in [66]-chap.14.
Finally, the error probability at the detector output is given by
1 X X \
BER%! = = d(z;z) =Ep[ (d) (2.73)
AL P}

Conclusions

We have described the BICM transmitter applied to multiple antenna channelsand its assaiated
iterativ e receiver. Then the fundamental ideal interleaving condition is described and exact
pairwise error probabilities are computedin both ergadic and block fading channelscases.These
exact pairwise error probabilities may be usedto compute very tight bounds on the error rates
using either a union bound for ergadic channelsor a tangential spherebound for block fading
channels. The asymptotic performance expressionsgive design criteria for the binary labeling,
the linear precader and the error correcting code choice. Theseoptimizations will be discussedn
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next section. Finally, the geniemethod and an analogywith the ML performanceat the detector
output assumingideal interleaving are described. Section 3 shaws that the geniemethod can be
invoked for the labeling and for the linear precoder optimizations.
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Chapter 3

Bit Interl eaved Coded Mo dul ati on
opti mi zati ons for MI MO channels

I ntro duction

In Chapter 2, we have presented the BICM transmitter and iterativ e receiver structure, and
its performanceon MIMO channels. We will now optimize ead BICM componert in order to
enhancethe Frame Error Rate (FER) or Bit Error Rate (BER).

In Section 3.1, we will focus on the mapping optimization, providing high coding gains and
obtained by increasing Euclidean distancesbetweenthe global codeword points. We introduce
the new idea of multi-dimensional mappings allowing capacity approacing performance with
elemenary codes.

The caseof block fading MIMO channel is much more thorny. We must rst maximize the
diversity order beforethinking of optimizing the coding gain. The BICM componerts optimiza-
tion should be done jointly. In Section 3.2, the linear precading optimization is considered,we
preseri the conditions to be satis ed to adchieve the optimal coding gain for a target diversity,
and optimize the linear precoder to achieve good performance with an iterativ e receiver. In
section 3.3, we take the linear precading spreading factor into accourt in the computation of
the singleton bound on the diversity order, which enablesusto nd the minimal precoder size
that leadsto full diversity performance. Finally, in section 3.4, we optimize the interleaver to
achieve the potential diversity and coding gains promised by the other elemens optimization,
under the constraint of ideal interleaving.

The notations required for the reading of this section were preseried in Section 2.

3.1 Mapping optimiza tions

The binary mapping optimization of a signal constellation is an old problem in communication
theory. Mappings basedon Gray code [2] and Ungerboed set partitioning [79] are among the
most famous binary labelings for coded and uncoded modulations. In this section, a gure of
merit for the binary mapping is derived from the ideal ML performanceon an ergadic multiple
antenna channel. A designcriterion basedon this gure is applied to the signal constellation to
nd good mappings suited for space-timecoding. This ideal ML designcriterion coincideswith
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the criterion basedon the geniemethod. Then, it is shavn that the mapping gure of merit given
by the ML performanceis equivalent to the one given by the closed-formexpressionof the genie
performance,related to ideal iterativ e decading. The geniemethod has beenpreviously applied
to single antenna fading channels[20][55] and to multiple antenna channelswith bi-dimensional

mappings [92)].

Optimized mappings can be determined by two possibleways: 1- Searding inside a ran-
domly selectedlist, 2- Applying the Binary Switching Algorithm (BSA) preseried in [88][71].
The rst method is usedin high complexity systems(large labeling length) and the secondone
is very e cien t for a reducedlabeling size.

We have preseried an approximation of the BICM performancewith ideal interleaving and
ML decaling. This approximation is a function of the signal-to-noiseratio, the number of trans-
mit antennasand the error-correcting code. Moreover, it mainly dependson the set of distances
D given by the binary mapping bit ipping and doesnot rely on the constellation shape itself.
This allows to evaluate the performanceof any constellation, even the most unstructured. The
performancecomputation has beenprocessedn the generalcaseof n;-dimensional distancesdy.

We will rst calculate the gure of merit to be optimized for a given n¢-dimensional mod-
ulation thanks to its assaiated distance set D. Then we will apply such an optimization to
the classicalQAMs and intro duce the multi-dimensional mapping concept.

3.1.1 Mapping gure of merit

Let us rst extract the asymptotic coding gain from the genie performance at the detector
output. The asymptotic expressionof BERY! whenNg! 0is

det . 2n, 1 (2Ng)™
BER™'s " T (3.1)
wherethe gure of merit F9 can be computed via
1 1 X X
— =Ep d®™ = —— —— (3.2)
det N, . 2ny
F mnej j, o, d(z;z)
The asymptotic expressionof BERY® whenNg! 0is
X K
BERdee .= L 5., o 2wdimn 1 p Tk 3.3
No! O i kCI—C J J0H min Nt dH min 1 2N0 ( )

Indeed, the error events with Hamming weight greater than dymin have higher diversity and
negligible cortribution to the performancefor high signal-to-noiseratios. The distancesin the

sequencgds;:::;dq,,,, ) areindependert random variablesthanks to the ideal interleaver. The
coding gain is a function of the mapping gure of merit Fde¢
" #
1 _ A 2, _ 2n,  OHmin
Fdec ~ E . d, = Ep d (3.4)

which leadsto Fdec = Fdet %mn e notice that optimizing the mapping by maximizing the
gure of merit derived from the ML decaling criterion is equivalent to maximizing the gure of
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merit given by the genie method at the detector output. We can compute the asymptotic gain

of labeling , with respect to labeling 1 asfollows:

!
det

, 1
Gaingg s n—lOIoglo (3.5)
r

2
Fdet

1
The asymptotic gain only dependson the distance distribution of the equivalent BSKs. We can
for example comparetwo QAM mappings together or a QAM mapping with a PSK mapping.

3.1.2 Multi-dimensional labelings

When we consider classicalmono-dimensionalcomplex labelings, the asymptotic gain optimisa-
tion is limited by the m n; distancesof mono-dimensionalcomplex vectors. Clearly, vectors
with more dimensionswould leadto higher asymptotic gains. Let us de ne nmap asthe number
of antennas linked by the labeling.

When performing APP detection, the soft output is computed taking all the set of transmit-
ted vectorsinto accoun. In this case,there is no complexity increaseusing a multi-dimensional
mapping. When the spectral e ciency is too high, e.g.,4 4 MIMO with 16-QAM input, the
exhaustive detector is intractable, and a near-optimum APP detector sud as SISO spherede-
coder can be used[93]. When using sub-optimum APP detectors such as SISO-MMSE [2§], the
multiple antenna channel is consideredas n; interfering 1 n, SIMO channels,and an exhaus-
tive APP detector is processedon ead sub-channel input. In this case,the multi-dimensional
mappings cannot be used. The ny n; MIMO channel can be viewed as np,t Sub-channels
equivalert to n¢=npart Ny MIMO channels. We can use a multi-dimensional mapping with
Nmap Npart, cOompute an exhaustive detector on ead sub-channel and a sub-optimum low
complexity detector to separatethe npar¢ sub-channels.

The BICM performancedependson the setof BSK modulations assaiated with the mapping.
For example, the Gray mapping and its assaiated BSKs are represened on Fig. 3.1-a. The
function ( d?) dened in (2.72) is a decreasingfunction of d?, this induces that maximizing
the BSK distance improves the constellation mapping. The mapping gure of merit Fdt js
asymptotically de ned in (3.2). For example, the genie performance of 16-QAM with Gray
labeling and minimal Euclidean distance 2.0 is

BER, = g—g (4) + 332 (36) (3.6)

The genieperformanceclosed-formexpressionon MIMO n; n, channelsand the asymptotic
gain expression(3.5) are very useful when designingbinary mappings becauseof the seart pro-
cedurelow complexity. We choosethe mapping at random or using an optimization algorithm
sud asthe Binary Switching Algorithm (BSA) [88][71]. A mapping is optimized for two param-
eters: n, and nmap. Indeed, for a given labeling, the asymptotic gain is the samefor all n¢. In
the caseof 16-QAM constellations, we can determine numerically the asymptotic gain probabil-
ity distribution of a randomly selectedbinary mapping, taking the Gray mapping as reference.
On Fig. 3.2, we seethe asymptotic gain distribution whenn, = 1;2;4 and nynap = 1;2,4. We
alsolisted in Table 3.1 the mean, variance and maximum value of the asymptotic gain found by
our seart procedure. We randomly selecteda large number of 2™-QAM mappings, the seart
is not exhaustive . In the caseof n, = 1 and nyap = 1, the best mapping we found exhibits
an asymptotic gain of 7:1 dB. This mapping is represened on Fig. 3.1-b and has no evidert
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Mean | Variance | Max gain Max gain
(dB) (dB)
at random | with BSA alg

Ny = 1,Nmep =1| 3.15 0.35 7.10 7.23

Ny = 2,Nmap = 1| 2.40 0.29 7.27 7.42

Ny = 4,Nmep = 1| 143 0.13 7.15 7.36

Ne=1,Nmap=2| 6.75 0.02 7.48 10.68

N = 2,Nmap = 2| 5.65 0.04 6.80 11.12

N =4, Nmap = 2| 3.59 0.04 5.01 10.98

N = 1,Nmap = 4 | 10.97 0.01 10.99 =

N = 2, Nmap = 4 | 10.67 0.01 10.71 =

Nr =4, Nmap = 4| 833 0.02 8.57 =

Table 3.1: Statistics of 16-QAM optimized mappings

m=1m=2 m=4|m=6
Ne=1,Nmgp = 1| 0.00 1.25 7.23 12.62
Nr=1,Nmap=2] 125 5.05 10.68 =
Nr=1,Nmap =3 | 3.55 6.52 = =
Nf=1,Nmgp = 4| 5.05 = = =
Nf=2,Nmgp = 1| 0.00 1.02 7.42 12.97
Nf=2,Nmgp = 2| 102 5.02 11.12 =
Nf = 2,Nmap = 3| 3.46 6.24 = =
Nr = 2,Nmap = 4| 5.02 = = =
Nr = 4,Nmap = 1| 0.00 0.69 7.36 12.81
Ne = 4,Nmap = 2| 0.69 4.98 10.98 =
Nr = 4, Nmap = 3| 3.35 6.16 = =
Nr=4,Nmap = 4| 4.98 7.26 = =

Table 3.2: Best found asymptotic gains (in dB) with respect to Gray mapping for 2™-QAM
constellations and nmap dimensions

symmetry properties. When increasing the mapping number of dimensions (Nmap > 1), it is
possibleto increasethe minimum Euclidean distances of the embedded BSKs. This explains
why the statistical mean of the asymptotic gain improvesfor npap > 1.

We applied sudc optimizations to other spectral e ciency valuesand mapping number of
dimensions,the best gains we found with BSA are preserted in Table 3.2 for 2™-QAM constel-
lations. Unfortunately, the BSA algorithm complexity grows strongly with the global spectral
e ciency of the system,that is why we are limited to m:nmap < 10.

3.1.3 Increasing the number of dimensions with Space Time precoding

Linear precading can be usedto increasethe diversity of systemswith a small number of anten-
nas. The symbols of s time periods are grouped together and spreadover the transmit antennas
and time periods without decreasingthe systemrate. The linear precoder's matrix S has sn;
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Figure 3.1: Mappings of 16-QAM constellation.

rows and columns, where s is called the spreading factor of the linear precoder. A BICM on
an ergadic multiple antenna channel exhibits a diversity equalto dy min Nr. We can increasethe
obsened diversity to sdymin Ny using an sn;  sh; complex linear precader. For example we
may use cyclotomic rotations [13][92][95]. If the linear precader satis es the norm conditions
preseried in [92] on an ergadic channel and under a genie condition, maximum precoding gain
is obtained and the channel may be seenasal sn, SIMO channel. Multi-dimensionnal map-
pings designedfor sn, receive antennas may be usedwithout any adaptation. The detection is
processedover s time periods. We can use at most an sn¢-dimensional mapping. As seenin
the simulation results section, if s > 1, we succeedin enhancingthe coding gain via a mapping
dimensionincreaseat the cost of detector complexity increase.

3.1.4 Convergence behavior

We have designedmulti-dimensional mappings having large potential gains. Unfortunately, we
cannot use such good mappings with a powerful error-correcting code becauseof corvergence
problems. Many studies have beenmade on BICM corvergenceusing exit charts [78] or transfer
functions. Most of them conclude that the best the gain is at the last iteration, the worst it

would beat the rst iteration. When consideringa joint detection and decading, the corvergence
is perfect if the bit error rate at the SISO decader input at the rst iteration is under a given
threshold, which corresppndsto an SNR value, commonly called waterfall point. The threshold
dependson the error-correcting code, and in general,the bestthe code, the lower the threshold. If

the signal-to-noiseratio is higher than the waterfall point, the systemcornvergesto an asymptote
after a number of iterations decreasingwith the noiselevel. At very high signal-to-noiseratios,

the mapping gain with respect to gray mapping is always obsened at the output of the error-
correcting code. For di erent mappings, the asymptotes are parallel, their slope is equalto the
collected diversity lead by the minimum Hamming distance of the code, the number of receive
antennas and the linear precading factor. If we are interested in a target bit error rate equal
to 10 °, we have to nd a good compromise between the waterfall and the error o or, asin

all iterativ e processes. In the best case, performance corvergesto the asymptote exactly at

the target error rate. This explains why when using mappings with high gains, we have to

use "bad" error-correcting codesto ensurea good corvergence. We can illustrate this point on
Fig. 3.3 which represers transfer functions (SNRY', SNRIe!) of the detector using a Gaussian
approximation and dierent mappings. The transfer functions (SNRY¢ SNRIS) of dierent

convolutional codesare alsodrawn. The transfer functions of RSC codesshaw us that the best
the code, the higher the slopes. The transfer function of the detectorofa2 2 MIMO channel
with SNR = 4:0 dB with QPSK input is also represened with di erent mappings. The higher
the asymptotic gain, the higher the right asymptote, but the lower the left asymptote. We
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We suppose nt>=nmap

nr=4 nmap=4

nr=4 nmap=1
l nr=1 nmap=2

pdf

nr=2 nmap=2

i nr=4 nmap=2
inr=2 nmap=1 l \

nr=1 nmap=1 .

SNRdB gain with respect to Gray Mapping

Figure 3.2: Asymptotic gain distribution of random 16-QAM mapping with respect to Gray
mapping.

deducethe convergencepoint searding for the xed point beginning from the left bottom of
the graph. For a given signal-to-noiseratio, when using multi-dimensional mappings with high
asymptotic gain, we have to use "bad" error-correcting codesin order to achieve a xed point
closeto the right asymptotic value of the detector transfer function. This is equivalert to a
perfect corvergenceto the limit obtained by the genie method.

3.1.5 Simulation Results

We present some simulation results illustrating the signal-to-noiseratio gains produced by a
multi-dimensional labeling under iterativ e joint detection and decading. When consideringcon-
volutional codes, an exhaustive APP detector computes the soft values delivered to a single
SISO decdder: One iteration includes one detection and one forward-badckward passon the con-
volutional code trellis [4] . When a turb o-cade is used,oneiteration at the receiver sideincludes
one detection, one forward-badkward passon the rst convolutional constituent followed by one
forward-backward passon the secondconstituent.

First, Fig. 3.4 illustrates the error rate of a two-state (3; 2)g recursive systematic corvolu-
tional code (RSC)ona2 2 MIMO channelwith 16-QAM modulation. All situations preseried
on Fig. 3.4 correspond to nmap = 1. Gray mapping is comparedto optimized mapping. The
latter shawvs more than 7:4 dB with respect to Gray mapping. The three graphs on Fig. 3.4
show the fact that the simulated error rate quickly corvergesto the ideal ML bound. The left
graph depicts the bit error rate at the decader output, the midle graph depicts the frame error
rate at the decader output, and nally the right graph on Fig. 3.4 depicts the bit error rate at
the MIMO detector output.
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Figure 3.3: Transfer function of RSC codes and QPSK multi-dimensional mappings, ny = 2,
nr=2,SNR=40dB

We now considera target bit error rate equalto 10 °, usually taken as a referencefor wire-
lessdata transmission. The bounds are not drawn anymore. Convolutional codescascadedwith
multi-dimensional mapping are compared to turb o-codes on Fig. 3.5. The channelis 2 2
MIMO ergadic with QPSK input. Non Recursive Non Systematic 2-states (3; 2)g convolutional
codesare combined to mono-dimensional, bi-dimensional and four-dimensional mappings. The
parallel turb o-code basedon an RSC (7; 5)g is cascadedwith Gray mapping. Optimized map-
pings degradethe performance of the turb o-cade at the rst iteration which erntails a dramatic
signal-to-noiseratio lossin the waterfall region. Fig. 3.5 shavsthat a (3;2)g convolutional code
with four-dimensional mapping (Nmap = 4= sny = 2 2) thanks to the linear precoder [92] per-
forms within 0:5 dB from a rate 1=2 Gray mapped turb o-code. The price to pay is the increased
detection complexity of the time-spread four-dimensional constellation. The optimized mapping
with nmap = 2 and without linear precading exhibit excellert error rates above 10 3,

On Fig. 3.6, we presert some simulation results on a 4 4 ergadic MIMO channel with
QPSK input and NRNSC 3,2. We used mono-, bi- and four-dimensional optimized mappings.
We obsene that the 0:69 dB (respectively 4:98 dB) gain between Gray and mono-dimensional
(respectively bi-dimensional) optimized mappingsis achieved. When the four-dimensional map-
ping simulation cornverges,the asymptote performs lower than 10 °, this is why we measure
slightly lessthan 7:26 dB gain at this BER value. In the latter consideration, the optimal
casewhen the simulation corvergesto the asymptote exactly at the target BER 10 ° is almost
achieved. Finally, the system performs as well as the much more complex system including
turb o-cade, without increasingthe complexity of the detection process. Indeed, in both cases,




46

Bit Interleaved Coded Modulation optimizations for MIMO channels

Figure 3.4: Ergodic 2 2 MIMO channel, interleaver sizeis 10000bits, 2-state (3;2)g corvolu-
tional code, 16-QAM modulation, 10 decaling iterations. ML upperbound is denoted by "ML
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20 iterations betweenthe detector and decader are necessaryto achieve the corvergencelimit.

On Fig. 3.7, we present somesimulation results on a 2 2 ergadic MIMO channel with
16-QAM input. When the BER is 10 °, the gain with a mono-dimensionalmapping is 7 dB.
With a bi-dimensional mapping we achieve 9:1 dB, which is lessthan the asymptotic 11:11 dB
gain becausecorvergenceis not reached at 10 °. With high spectral e ciency modulation and
a simple NRNSC 3,2, we adchieve performancewithin 0:5 dB from the turb o-code performance
with RSC 7,5 constituent codesevenonthe 2 2 ergodic MIMO channel.

The mapping optimization topic has beenextensively discussedfor BICM on single-artenna
channels. In this paper, we have presertied an extensionof this optimization to multi-dimensional
mappings. We have preseried rst an exact expressionof the pairwise error probability for
a BICM over a MIMO channel with the ideal interleaving assumption. The pairwise error
probability is usefulto evaluate the BER and FER via a union bound and draw an approximation
of the ideal ML performancefor moderate and high SNRs. A tangertial spherebound could also
be derivedto tighten the bound for low SNRs. The union bound hasbeenapplied in this paperin
the context of mapping optimization. Other straightforward applications of the preseried closed
form performancecould be rotated QAMs or space-timecoding. For mapping design,we derived
from the union bound a gure of merit and shoved that it was equivalent to the one obtained
with the more intuitiv e genie method. In the caseof high spectral e ciency modulations or a
large number of transmit antennas, we achieve very high mapping gains and we perform closeto
turb o-cadeswith a single corvolutional code, without increasingthe optimum or near-optimum
APP detector's complexity.

3.2 Linear precoder optimiza tions

We call space-time spreading matrix or linear precoder the particular caseof full rate linear
space-timeblock codes. The space-timematrix enhanceshe diversity by mixing the symbols of
di erent time periods and antennas. Many authors have described various works on space-time
spreadingmatrices including an error correcting code. For someof those space-timeblock codes,
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there existsa simple maximum likelihood (ML) decader. However, most of the codesthat achieve
good performancesacri ce the transmission data rate, for example transmitting 1 information
bit using 4 transmit antennas and 4 time periods. Moreover, the designof sud codesis often
basedon some Alamouti's code extensions,which is only optimal for a2 1 MIMO channel.
Other works on full rate space-timecodeshaverecertly beenproposed([6][24][25][26][27][29][62])
but do not considera concatenationwith an error correcting code. We describe an optimal solu-
tion for linear precading for BICMs under iterativ e decaling process.Our strategy is to separate
the coding step and the geometry properties in order to expresssomecriteria allowing the sys-
tem construction of a space-timespreadingmatrix for given channel parametersn¢;n;;nc. The
inclusion of rotations to enhancethe performanceof BICM over single antenna channels have
beenproposedin [53], we extend this ideato block fading MIMO channels.

When the channelis ergadic, the diversity at the decader input and output are respectively
n, and n,dymin . We have shown in Section 3.1 that some elemenary codes (e.g., NRNSC
(3;2)g) could be usedto allow a good corvergencewhen using high gain mappings. In this case,
the error- o or exhibits low diversity. One solution to enhancethe diversity of elemenary codes
is the useof linear precading that allows to recover a diversity order up to n;s and n;sdymin at
the decdader input and output, respectively. The parameter s is called spreadingfactor.

When the channel is quasi-static or block fading with parameter n¢, the diversity is upper
bounded by ncn¢n, which can be more limiting than n,dqmin (€.9.,nt = 2, ny = 1, nc=1). We
describe a new design criterion of space-time spreading matrices that give a diversity propor-
tional to the spreading factor and a maximal coding gain at the last iteration of an iterativ e
joint detection and decading.

First, the linear precader matrix must have a hon-null determinant to exhibit full-div ersity.
Indeed, a non-full rank transformation is equivalent to a reduction of the number of transmit
antennas. We supposethat the rows unity norm condition is satis ed but this is not a necessary
condition, an unequal power transmission on eat dimension could be exploited by a successie
interference cancellation receiver. This is not the issuein our case.

In Section 2.2.4, the coding gain of an ideally interleaved BICM with linear precading is
de ned by " #
Pn ¥
Gsnes ' V= E J2m (3.7)
v=1

Remenber that the 2 valuesare given by the sequenceof the non-null eigervalues #E;]i. The
value #E;]i denotesthe i-th eigervalue of M E]M E] where M E] is de ned by

Xt x3 : .
81 k ne=ngs;81 t ngs; U=mMml= 2, oM gl (3.8)

3.2.1 The BICM ideal coding gain

First, remember that the linear precading cornverts the ny n, MIMO n¢-block fading channel
into an Ny N, correlated MIMO n¢=n¢.s-block fading channel.
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If we considerthe generalcaseof a linear precoded BICM, we can wonder what is the best
achievable coding gain for the xed parametersny, n;, n¢, Rc and how to choosethe error cor-
recting code, the binary mapping, the linear precader and its parameterss and n¢.s to achieve
the ideal coding gain.

First, we want to achieve full diversity under ML decaing or iterativ e joint detection and

decdding, this inducesthat there are n¢n¢ non-null eigen/alues#[kt;]i.

2 3
ncYﬂc;S IVS;S Vit . n,
et = E 4 #ei o ° (3.9)

Nes
k=1 t=1i=1

We want to maximize the Gsn.s expression. A sucient condition is to maximize the
instantaneousgain. Assumethat the norm of eac row S; is equalto 1, we get

Negnes feis Xt NegNes Wt X
= 2= (3.10)

We usethe Lagrange multiplier

0 1
Neyles Res it o Neghes Res ot " NegNes Wit
- ' 2
f= % @ % 7l (3.11)
k=1 t=1 i=1 k=1 t=1 i=1 k=1 I=1
The nulling of the derivation of f with respect to #[kt;]io leadsto
Qni:nc;s Qn_c;s Q_n_t #[tlnr ncinc;s )bh 2_ Nl d-2
8k0, io;tQ1 - k=1 t—[t:LO] i=1 "k;i ’ #[ktg]io - kil _ i (3.12)
fir #oio ' k=t 1= e oy MiMe
which induces 20 . nenen; 3
qes'" = E4Q@ o A s (3.13)
k=l 1=1 ¢

The ideal coding gain is a fundamertal limit which cannot be outperformed. It is useful to
evaluate how optimal the practical designof a BICM is. Our aim isto nd the best design,
corresponding to eigernvalueswhich are asmuch aspossibleall closetogether. The moredi erent
the eigervaluesare, the lower the product in (3.9) and the coding gain are.

Without linear precading, the ideal coding gain is only achieved if all . are equal. Remem-
ber that eadh | isasumof |, distancesdy.;. Under ideal interleaving, the |, are closeto
w=(ntn¢). We concludethat the variance of the . valuesdecreasesvhenw increases.Thus, if
the error correcting code is powerful enoughwith respect to n¢n. and jDj, it allows for a good
averaging of the dy. . into the |, and quasi-ideal coding gain is obsened.

If the error correcting code is not powerful enoughto achieve the ideal coding gain, i.e., the

k1 valuesarevery di erent, wewill seethat the linear precoder providesa additional coding gain
by averagingthe . valuesbeforetransmission. First, we derive the optimal coding gain which
can be achieved using an ideal linear precoder for a given binary labeling and error correcting
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code. The expectation in (3.9) is made over the setof elgen/alues# which is only dependert on
the set of factorized distances .. Variables . for dierent k valuescorrespond to independert
ann reallzatlons Hy which are not linked by the linear precoder. Thus, random variables

s #kt]I are independert for distinct valuesof k. We get
2 " #3
NeyNe:s Ress it g N
MO Ergd By, #a S (3.1
k=1 ’ t=1 i=1
ans Qm [t] ,
We apply a Lagrange multiplier on the product 1 H " under the constraint
Neis Yot Rt
" _ 2n,
t=1 i=1 1=1
We obtain 2 o3
NegNe;s 2 c;s NtNr
(%ncml’lr — E4 Yn R kil 5 (316)
Ng;s ;opt ntnC;S

k=1 I=1
Equation (3.16) meansthat an ideal linear precader is capable of making eigervaluesequal for
a samek. Howevwer, for di erent valuesof k, the #[kt;]l eigervaluesare di erent, which inducesa
coding gain loss. A condition to satisfy the equality betweenthe eigen/aluc—:ts#[(t;]i is

Xz X

2
. kOl
NtNc

8(k;k9: (3.17)

= Mo
which dependson the binary labeling and the number of di erent bits in the consideredpairwise
error probability.

. . . P ne=n.s P
For a given set of distancesdy,;i, the expectation of =~ ="~ It 2 =(n;nc;s) is constart

for any choiceof n¢:s. and the varianceof Y} 2 =(n(ncs) decreasesvhen n.s increases.The

best coding gain is obtained when the variance of the eigernvaluesis minimized. Thus, Gsn . :opt
is an increasingfunction of n¢.s. For a given s, we should choosenc.s = min(s;n¢). The optimal
coding gain Gs;min(s:nc);opt IS @n increasing function of s. If s = n¢n, the ideal coding gain is
achieved. Finally, we can surround the coding gain as follows:

8s;n¢;s  Ggeal C':s;min(s;nc);opt C':'s;l;opt Gl;l;opt = Gyt (3.18)

If, for any pairwise error probability, the error correcting code and the mapping are designed
to allow Gy ' Ggeal, the linear precader optimization is uselesfrom a coding gain point-of-view.
Howewer, such an optimisation for any pairwise error probability is tricky, indeed intractable.
Furthermore, the rst objective of linear precading is the diversity cortrol, which has a high
in uence on the performanceevenat low FER (10 2 10 2), especially for low diversity orders.
Thus, precading is often useful in the BICM structure.

Example of ideal coding gain with a 2 1 quasi-st atic MIMO channel
In order to illustrate the role of the linear precading in the coding gain optimization, we con-
sidera 2 1 quasi-static MIMO channel, a pairwise error probability betweentwo codewords
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Figure 3.8: Coding gain for unprecoded 2 1 quasi-static MIMO channel
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Figure 3.9: Coding gain for precaded 2 1 quasi-static MIMO channel, s = 2

separatedby a Hamming distance w bits.

Fig. 3.8 represetts the distribution of the two 2 and 2 valuesover the two transmit an-
tennasand on two di erent time periods. This illustrates the factorization of the distancesinto
the values. The instantaneous coding gain is equalto 1 2. Supposethat a linear precoder
spreadsthe value ; over two time periods as presened in Fig. 3.9 and two transmit antennas
dividing the power in two equal parts 2=2. The averagevalue ( 2+ 2)=2 is transmitted on
ead antenna, the coding gain is optimal and equalto ( 2+ 2)=2.

For example, considera BPSK modulation and a pairwise error probability with Hamming
weight 3. With optimal linear precading, the ideal interleaving provides for example 2= 2 22
and 2= 1 22 With optimal linear precoding, we have 2= 2= (2 22+ 1 22)=2. The
ratio betweenthe two instantaneouscoding gainsis equalto ~ 8=9 which predicts a gain of 0:26
dB using linear precading. If w = 5, the cading gain becomesl10log,o( 25=24) ' 0:09 dB.
If w = 11, the coding gain becomes10log,o( 121=120)"' 0:02 dB. The higher the Hamming
weight of the pairwise is, the lessthe di erence betweenthe factorized distancesis and the less
coding gain is; becausethe | valuesare higher.

If we show the coding loss betweenan ideally precoded scheme and an unprecoded scheme,
we have

2, 2
e 1
= p 319
> P (3.19)
2 _ 3+ 3 2 — 3+ 3 i
where £ > (1+ ) and 3 > (1 ). The variable denotesthe degree

of di erence between #? and 3. Assuming an odd Hamming weight w, the ideal interleaving
condition supposesthat the number of di erence bits transmitted on ead of the two antennas

is(w 1)=2and (w+ 1)=2. and = 1=w. Fig. 3.10illustrates this coding lossfor ny = 2
and n, = 4. We obsene the coding lossfor w = 3, w = 5, w = 7, w = 9 which respectively
correspondsto = 1=3, = 1=5, = 1=7and = 1=9. We can obsene that the higher w is,

the lessis the di erence betweenthe ideal coding gain and the coding gain obtained without
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Figure 3.10: Coding loss between unprecoded and ideally precaded systems. ny = 2, n, = 1,
nc= 1and BPSK input. measuresthe degreeof di erence between ? and 2.

linear precading is. If w is even, the ideal interleaver leadsto the equalization of # and 2,
there is no supplemeriary gain to be provided by the linear precoder.

Moreover, we can notice that all these coding gains dependson the geometrical norm para-
mater ncsnin,. We can expect larger coding gains provided by linear precading when the
diversity order collected at the detector is high.

We can concludewith the two following points:

The coding gain given by a linear precoder increaseswith the diversity order.

The coding gain given by a linear precoder decreaseswith the Hamming weight of the
pairwise error probability.

Now, we should focus on the creation of linear precaders that maximize the coding gain for
agivens.

3.2.2 A class of linear precoders

The index t denotesthe t-th channel realization in the spreadingmatrix. Property 3.12 implies
that two matrices Mfﬂ and M|£t2] have the sameeigervalues. A su cien t condition to satisfy
the equal eigervaluesis 8(t1;t»); ME” = Rl M,EIZ]RH?t2 where R'4'2 js a unitary matrix, for
example a rotation. This directly induces that 8(t1;t2);Sd|t1] = SdItZ]Rtl?tZ. The sub-part S,[“]
seesa quasi-static channel, spreadby a factor s°= s=n..s. Assumethat s®is an integer, divisor
of n. We concludethat it is su cien t to designthe rst sub-parts of the precoder matrix rows
for a quasi-static channel and rotate it to compute the other sub-parts. Furthermore, any choice
of R'+*2 |eadsto the sameperformancebecausehe eigervaluesremain unchanged,the condition
simpli es to ksT'k = ksd'?k,
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Let us now setthe index t and optimize the equivalent precoder over the quasi-static channel

diag Hy M, TH 1T i all the eigervaluesof M [t]M M are equal, ME] is a weighted unitary
matrix, sois ME] and
X Xt
MM = mI M= Vo voy = st st (3.20)
1=1 1=1
The s° n matrix Sdlt] given by 5
S[t][l]
[t][2]
(3.21)
S[t][sO]
We get
) SED S .
t t t t
gstsf=" 2 gl gt (3.22)
1=1 I=1 i=1

' ) P ) '
The matrix SM sM has a rank equalto 1 and the matrix &, SM s has a maximal
rank s% It is impossiblethat ead eigervalue equals |1} If;lzntnc;g asrequired to achieve the
optimal coding gain. However, in order to insure that ME]ME] has a rank n; and that the
eigenvaluesare the most equal as possible,we group ss®values i, together and assaiate them

to one of the ny=<" group of s® eigervalues: Denote Sl[t][i]“] thej th sub-part of sizes®of Sl[t][i].
Denote fl,;11g the index of the (I,  1)ss°+ I1-th row of S, wherel, 2 [1;n=s];11 2 [1;ss9.
Assumethat S has only one non-null sub-part in position I, i.e.,

fl2;l1g
; il — .- .-
j&ly siill=10::::0] (3.23)
we have
X X %’ %"
2 gl gdt] _ 2 (1] gt}
kST ST = Kiflzihg  StizligSl2iig (3-24)
=1 l=1 I=1 i=1 |
%=’ %s° X _—
_ 2 [tIi12] GlHIGN]
- kitl2:11gP 12 Stirhg Sipig (3.25)

I>=1 I1=1 i=1

where D|,(A) is a block diagonal matrix with only one non-null block é in position I,. Now,
assumethat isans® s®scaledunitary matrix, we get = = 7, , i=lsowhere
i isthe i-th row of ;. We chooseS!M2] a5 the i-th row of ans® <P unitary matrix. Using

flo;lig
ksftl]z[q[lé]kz = 1=s, we get:
rX:SoXSo 1
2 odt] odt]l _— 2
1Sy Sy = k;flz;llgD|2 glso o
1=1 2=1 =1
1%
= s diag kflllg| 011 kfnt—SO|1gISO (3:27)

|1=1
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which leadsto
[t] 1 %
_0; Q _ 2
IZ nt—s,l S y #k,(lz l)SSo+i - g k,f|2,llg (328)
l1=1

The random variables f;flz;llg are independert identically distributed for di erent valuesof |1
and |,, the coding gain is

2
nc?nc;S nY:SOO XSO 2 1 SonC;S nr
G e = E @ _Kilzhop £ (3.29)
' kel =1 h= O
P ne=n.s P n=<P _ _
For agivenrealization fdy;:::;dyg, thesum o™ = 10 5 2 isconstart. This

: . , Pso 2o : :
inducesthat for a given s, the variance of = ., 2% remains unchangedwith nc;s. Suc

precaders provide the samecoding gain for any choice of n¢.s but doesnot achieve the optimal
coding gain for any valuesof s°. The averaging is made over ss® di erent values whereasthe
optimal coding gain necessitatesan averagingover sn; values. However, if ss%is su cien tly high,
the obtained coding gain approachesthe optimal coding gain. If s°= n, the complete spatial
transmit diversity is collected by the detector and the optimal coding gain is achieved.

Prop osition 2 Disp ersive Nucle o Algebraic (DNA) Precoder Let S bethe N; N pre-
coding matrix of a BICM over ann;y n, MIMO n¢-block fading channd. Assumethat S precodes
a channd block diagonal matrix with s blocks and n¢.s channd realizations. We denote s the
spreading factor, Ny = sn; and s°= s=n;.s. Let Sl[t] be the t-th subpart of size N¢=n..s of the
I-th row of S. Let Sl[t]['] be the i-th subpart of size n; of Sl[t]. Let Sl[t][']“] be the j -th subpart
of size s? of S,[t][']. The subpart Sl[t][']“] is called nucleotide. The linear precoder guarantees full
diversity and quasi-optimal coding gain at the decoder output under maximum likelihood decoding
of the BICM if it satis e s the two conditions of null nucleotides and orthogonal nucleotides: (for
allt 2 [L;nesl;i 2 [1;89;11 2 [1;889;12 2 [4;ne=s] and flp;1ig= (12 1)ssP+ Iy).

8 .
2 8 6lzj 2 [Ln= sl =0, o Null Nucleotide condition
> . .
8i%6 i;i%2 [1;89; Sf[tI]Z['I]E';]Sf[tllz['E[g"] = 1d(i i9 Orthogonal Nucleotide condition
(3.30)

whered(0) = 1and d(x 6 0) = 0.

Let ustake for examplen; = 4,n¢s = 1ands = 2. A DNA matrix would have the following
form :

Ss o g o
sy o gl
s o b
[1][1][1] [1][2][1]
DNA(Nn; = 4ngs = Lis= 2) = Sflgg S[l]([)l][Z] Sflgg S[1]([)2][2] (3.31)
f2;19 f2;1g
o i o Jih
o SEh o gl
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Now, let us considera linear precoder matrix S that satis es proposition 2. De ne Hlf('g an
ss® N, matrix de ned by the extraction of the rows of Hy corresponding to the i-th block of
sPtransmit antennas. More precisely we extract every n;=s>th block of s° rows of Hy begining
with the i-th block

8i 2 [1;n=sY; 8] 2 [1;5%;8u2 [1;s];v2 [N, H, %G +us®v) = Hy(j + uny+is%v) (3.32)

Denote Sf19 the ss° ss®matrix de ned by the extraction of every n¢-th block of s columns of

S begining with the i-th block and the i-th block of ss® rows. It can be shavn that
Sf 1ngl;lg 3

Sf ngf2g
SHy = K (3.33)

anr=s°g|._||‘;Nt=S°9
which meansthat the matrix S independertly precadesthe n;=<" blocks of transmit antennas.
Thus, the optimization may be split into n;=s" independert optimizations of linear precaders
for s° n, MIMO Ncs-block fading channelswith linear spreadingfactor s. As s = sonc;s, full
space-timespreadingof the s° n, block fading channel is performed.

We can notice that, at the decaler input and under the ideal interleaving condition, the
linear precoder at the transmitter end and the detector at the receiver end allow the conversion
of the ny n, MIMO channel with n. independert blocks into a1 sn; SIMO channel with
ncn¢=s independert blocks. The independenceof the blocks is provided in two steps:

1. The null nucleotidesstructure of the linear precoading matrix multiplexes the transmitted
symbols on the n;="di erent blocks of s° antennas.

2. The orthogonal nucleotidesstructure of the linear precading matrix provides full diversity
and a coding gain increasingwith the spreadingfactor.

All results from the eld of error correction coding over block fading channels can be directly
applied without any modi cation to the new 1 sn, SIMO channel with nin.=s independert
blocks. Moreover, we will seethat an optimized interleaver achievesideal interleaving condition
only if the singleton bound on the diversity order is equalto the full diversity order. Clearly, the
space-time spreading factor s is a parameter that decideswhich percertage of the space-time
diversity will be exploited individually by the detector and the decader. This last remark will
be usefulto determine the minimal s that allowsto achieve ideal interleaving whenthe singleton
bound on the diversity order without linear precading is a limiting factor.

3.2.3 The genie metho d design criterion for full spreading linear precoders
(s°= my)

A linear precading designcriterion basedon the genieperformanceoptimization at the detector
output was proposedin [92]. When a genie gives a perfect feedba& of the mn; coded bits in
the APP detector computation, we already saw that the performanceis obtained by averaging
all the pairwise error probabilities obtained when changing only one bit out of mn;. Denote
dy the distance of the BSK. Assumethat the BSK is transmitted on antenna |, the asymptotic

expressionis " #
‘V 2 Nr v

2ny N 1 \
Pgeni E 3.34
genie No! 0 neN - 2N0 ( )
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where f g is the set of eigervalues of d2S4 s for all t and N is the number of non-null
eigernvalues. In the best case,there are s non-null eigervaluesand the coding gain is maximized
if they are equal. First, a sucient condition to have an equality betweenthe eigervalues of
sdtl gdul gng sdtel gdtel s ksdilyz = ksd'2lk2 Then, all eigervaluesof ST s are equal if
Sdlt] is a unitary matrix, which leadsto the following proposition:

Prop osition 3 A linear precoder achieving a diversity order sn, with maximum coding gain at
the detector output must satisfy the following conditions under perfect iterative APP decoding of
the space-time BICM:

1. The n¢.s sulparts of the rowsin the sny  sn; precoding matrix have the same Euclidean
norm

2. In each of the n¢.s sulparts, the s sulparts (nucleotides) are orthogonal and have the same
Euclidean norm

If s°would not be equal to n, this proposition would not be optimal in terms of maximum
likelihood performance. Howewer, this is a rst step to satisfy proposition 2. As s = ny,
propositions 2 and 3 are equal, so we can usethe separation of the optimization of an Ny N
linear precoder with spreadingfactor s into ny=<" optimizations of full spreadings®s s% linear
precaders. The optimization of S is now decomposedinto two steps

1. Apply the genie method to designa full spreadings% s% linear precader for s° n;
MIMO channel with n¢.s blocks, satisfying proposition 3

2. Placethe non-null sub-partsin S as described in proposition 2.

3.24 Modied cyclotomic DNA rotations: Full spreading optimal linear pre-
coder

It was shown that if a full spreadingis processedby the linear precader, i.e., if S = n¢ncs,
proposition 3is su cien t to achieve optimalit y and hasthe great advantage to be more intuitiv e.

We can seethe block fading MIMO channelis an ergadic MIMO channelin which the di er-
ernt realizations are those of a quasi-static MIMO channel. Let us de ne A as a block diagonal
matrix, the block of which have sizen? n? . Any linear combination of the lines of the Ny N
matrix A satis es proposition 3, this implies that for all Ny N; matricesM , the matrix S= M A
satis es proposition 3 too. The other condition to satisfy proposition 3 is the norm equality be-
tweenthe consideredparts of a samerow.

We have shown that any full spreadingmatrix that satis es proposition 3 achievesthe same
genieperformanceat the detector output. In practice, the genielimit and the ML performance
when using iterativ e joint detection and decading are never readhed. However, the performance
can be closeto both limits if the convergencequality is good. The system corvergenceis very
dependent onthe rst iteration performanceat the detector output which hasthe samebehavior
asthe lattice decading ML performance. Thus, our goalis to construct S both satisfying propo-
sition 3 and acdhieving good uncoded ML performance. In general, rotations give good lattices
performance.

Denote A,[f\],[i] the v-th coe cien t of Al[t][i], the I-th row of A. Let us focus on the particular
casein which all non null N{=n¢.s-lengthed parts of the rows of A are equal, i.e.,
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8(1:19 2 [LN;8(t 19 2 [Lingski 2 [Lngd; Al = AT (3.35)

10y
A can be decommsedinto two matrices and U (A = U), where is a diagonal matrix
and U is a block diagonal matrix where ead block is anny n¢ matrix lled with ones.In this
particular case,the diagonal elemens are \[,'][” satisfying

giiv; [1=alll (3.36)

i.e., the coe cien ts of the n2-lengthed parts of the rst row of A are put on the diagonal of
the matrix and repeated n¢.s times. Matrix A has of coursenon-full rank. We now apply the
matrix M to obtain a space-timespreadingmatrix S = MU, being a rotation. Thus, S has
to satisfy SS = MU (MU) = 1. For example,if and M U are rotations, the equality is
satis ed. Basedon this method, we will now explicitly describe the space-timespreadingmatrix
construction using cyclotomic rotations.

Choosing asa rotation implies that the norms of its diagonal elemeris are equalto 1. The
diagonalof s built from the n¢.s-fold repetition of oneblock with sizen? satisfying proposition
3. This block may be constructed asthe concatenationof the linesof ann; n; rotation matrix.
Furthermore, this rotation must have all elemens with unit norm, in order that  hasdiagonal
elemen norms equalto 1. Cyclotomic rotations satisfy this property.

An n n cyclotomic rotation is de ned by [12][13]
1 1

ir=exp 2 (i 1) T2n) + - (3.37)
where ( :) is the Euler's function. The non-null diagonal coe cients are de ned by:

; 1 v 1

[|] — . .

v=exp 2 (i 1) TZT) i (3.38)

The matrix S = MU satis es the conditions of orthogonality for any choice of matrix
M. Since S hasto be a rotation, the choice of M is restricted to matrices satisfying BB =

MUU M = 1. Taking B asa rotation matrix, B must satisfy proposition 3, i.e.,
Xt , :
R [t]li] g ({101 Co 1 v 1 _
8(I:1);i 6 i ’vleI;V By ' exp 2 (i i9 1(Zm)+ o =0 (3.39)
which is satis ed if
8(;1);i 6 i%vevd BB = gllB{’ (3.40)

The property (3.40) is satis ed by cyclotomic rotations. Indeed, if B is an Ny N cyclotomic
rotation, the coe cien ts of which are

1, HnZ+ (i Dne+v 1

12Ny N, (3.41)

Bil=exp 2j (I 1)

we have
1 N (i i9ng
1(2Ny) N¢

BHIBIMY = exp 25 (1 1) (3.42)
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which is independert of v.

Finally, we obtain a modi ed cyclotomic rotation givenby S = B, the coecients of S
being equal to

Stv+(i D+ Dn? = :
; i

. (t Dn2+(i Lng+v 1 . (3.43)
%exp 2 (1 1) 1(12Nt) + ot + (i 1) 71%2“ + V—ntl

|@>1W_t is a normalisation term. Let S(n¢;n¢;Nncs) be the modied cyclotomic rotation designed
for ny n, MIMO block fading channel, assumingthat the precoder sees.s channelrealizations.

In orderto con rm the choice of the modi ed cyclotomic space-timematrix, we will describe
another construction. We have already said that cyclotomic rotations are good candidates for
spreading matrices becauseof their norm properties, their easy construction and their perfor-

manceas lattices in the ML sense.Let bean N; N; cyclotomic rotation, it doesnot satisfy
N
the property 3. We apply multiplicativ e correction terms ed v to coecients sothat

satis es proposition 3.

] _ 1 , 1 v 1+ (i Dng+ (t 1)nt2 [t]i]
L= p—¢e 2 | 1 + + 44
I:v Nt Xp J ( ) 1(2Nt) Nt v (3 )
First, hasto be a rotation
gli;j0” Wi = q0;19 .
1 P’ HRY Vv A" ! (i ) ) i |
i (i Dne+(t n [t]Ii] [19]L) .
’ tiv %exp 4 0N 1(12Nt) + = I Ntt SREEY v = d(i;19
(3.45)
which is satis ed if 8(1;19; [41= (g,

Sinceead coe cien t is acomplexexponertial, the norm propertiesare satis ed, the last property
to be satis ed is the orthogonality betweenthe subparts which leadsto

i jo Xt q ) .

ep 2 (1 D " Zew 2 (1 =aii (3.46)
t ve1 Mt

The equality is satis ed if exp(2] Eyi]) is chosenlike the phasecoe cient (i;v) ofanny n;
cyclotomic rotation, i.e.,

1 v 1

+
1(2ny) Ny
We directly obtain the same modied cyclotomic matrix S(n¢;nr;nes), which gives full

diversity and optimal coding gain at the detector and decader output under ideal interleaving
assumption.

=G 1 (3.47)

3.2.5 Non-full spreading quasi-optimal linear precoder: DNA cyclotomics

Proposition 2 gives the design criterion for optimal full and non-full spreading quasi-optimal
linear precoders. We rst choosean quasi-optimal linear precoder designedfor a full interleaving
ofans® n, MIMO block-fading channel with n..s channel statesin ead precoded matrix. For
example, let us choose S(s% n,; n¢:s) de ned in 3.43. Then place n,=<" times ead subpart of
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S(s%ny; ne:s) in the precoding matrix in order to satisfy 3.43. This leadsto the quasi-optimal
linear precoder for any parametersng, nc.s ands. Let P(n¢; ne:s; S) denotesud an quasi-optimal
linear precader (s°= s=n..s and N°= s%), its coe cien ts are equal to

8l2 2 [1;ny=s; 811 2 [1;55%; 8t 2 [1;ng;s]; 8 2 [1;8%;8v 2 [1;8Y;
Stz Ds%s+livH(z Dne=s™(i ne+(t 1)sne = . ; i
plv_toexp 2 (i 1) —xprm*” 14(. 1,)\lst0+(t DE (1) b+ Y

and O elsewhere.

(3.48)

3.2.6 Observations of the quasi-optimal precoder under non ML performance

We have presenried quasi-optimal linear precoders providing good coding gain and full diversity
ML performanceunder ideal interleaving. However, the ML decader of the global Euclidean code
doesnot exist and we processiterativ e joint detection and decaling. Proposition 2 is satis ed
by anin nit y of matrices, all providing the sameML performance. We can wonder what is the
performancebehaviour after only oneiteration, i.e., when no feedba is given to the detector.
In this situation, evenwith the ideal interleaving condition, the erroneousbits are not necessar-
ily transmitted on di erent time periods. Let us consideronetime period and assumethat we
obsene two erroneousbits. First, if the bits are transmitted on the samesymbol, the Euclidean
distance dx changesbut this doesnot a ect the linear precoder optimization. Then assumethat
the two bits are placed onto rows of S corresponding to two independert blocks of s° transmit
antennas, the averageperformanceis not modi ed thanks to the independenceof the transmit
antenna blocks and to the unit norm properties satis ed by the sub-parts of the consideredtwo
rows. Finally, if two or more rows corresponding to the sameblocks of transmit antennas are
interfering, an optimization of the precoder following the Tarokh criterion should be done, under
the conditions preserted in proposition 2. Simulation results show that the modi ed cyclotomic
rotation givesgood uncoded ML performance,closeto algebraicfull rate space-timeblock codes,
thus we expect good performanceat the rst iteration of a joint detection and decaling process,
which hasthe two advantagesof reducing the number of iterations necessaryto achieve the near
ML performanceand to provide good performanceon non-iterativ e systems.

The optimization of the\rst iteration" is one of the points to be treated in the near future.

3.3 A modied singleton bound for the linear precoding factor
choice

The full diversity n¢in¢n; is collectedby the detector whens = n¢n¢, but unfortunately, the APP
signal detection has an exponertial complexity in s. On the other hand, the BICM channel
decder is also capableof collecting a large amount of diversity, but the latter is still limited by
the singleton bound [46][47][60]. Hence,the lowest complexity solution that reachesfull diversity
is to draw advantage of the whole channel code diversity and recover the remaining diversity by
linear precading. The bestway to choosethe spreadingfactor s of a cyclotomic rotation is given
by the DNA modi ed singleton bound described hereafter.

Let us examinethe Nakagami distributions at the decader input. The C decaler reconbines
via an APP decaling algorithm the extrinsic probabilities produced by the MIMO detector, or
equivalently, their Nakagami distributed Euclidean distanceswhen the genieis activated. The
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Nakagami distribution hasorder sn,. Recall that s = 1 when symbols are not precaded. In the
latter situation, it is trivial to shaw that the number of independert Nakagami laws at the de-
coder input is n¢n;. In the most interesting situation, i.e., s-spreadlinear precading with s > 1,
it is easyto show that the number of independert Nakagamilaws given to the decader is b c.
One property of the DNA linear precadersis to perfectly separatethe precoding into ny=s® sub-
channelsof s%transmit antennas. In this case,the number of indepedert blocks at the detector
output is exactly ninc=s. Assumethat DNA linear precodersare useduntil the end of the section.

The integer Ny = ncn¢=s is the best diversity multiplication factor to be collected by C:.
The length of a G= codeword is LcN¢ binary elemerns. Let us group LcNc=Ny bits into one
non-binary symbol. Now, Gz is a length N}, code built on an alphabet of size 2-cNc™No  The
singleton bound on the minimum Hamming distance of the non-binary G= becomesDy
Ny dNpRce+ 1. Multiplying the previous inequality with the Nakagamilaw order sn; yields
the maximum achievable diversity order dnax after decaling,

' k

j
NeMt1 Ro+1 (3.49)

d sn
max r s

wherednax is aninteger. Finally, sincedmax is upper-boundedby the channelintrinsic diversity
and the minimum Hamming distance dy of the binary code, we can write

k

j
NeMt 1 Re)+ 1 :ninen,:sn;du (3.50)

S

Omax min sn,

If dy is not a limiting factor (choose C accordingly), we can selectthe value of s that leadsto
a modi ed singleton bound greater than or equalto n{n¢n,. To do so, two necessaryconditions
must be satis ed:

1. n¢n¢ is a multiple of s

2. S Rcneng

Prop osition 4 Considaing a BICM with a rate R¢ binary error-correcting codeon an ny  ny
MIMO channd with n; distinct channd states per codeword, the spreading factor s of a DNA
linear precoder must be a divisor n¢ne and must satisfy s Rcncne in order to achieve the full
diversity n{n¢n, and quasi-optimal coding gain. In this case the ideal interleaving condition can
be achieved with an optimized interleaver.

The smallestinteger sopt satisfying the above proposition minimizesthe detector's complexity.
If Rc> 1=2, then sqpt = Nncny which involvesthe highest complexity. If Rc 1=(ncny), no linear
precoder is necessary
Table 3.3 and 3.4 show the diversity order derived from the singleton bound versuss and ny,
for n¢ = 1 and ne = 2 respectively. The valuesin bold indicate full diversity con gurations. For
example,in Table 3.3, for n; = 4, s = 2is a better choicethan s = 4 sinceit leadsto an identical
diversity order with a lower complexity.

3.4 Interlea ver optimiza tions

We present a newBit Interleaved Coded Modulation (BICM) interleaver designwhich guarantees
a maximum diversity at the decaer output, when the channel has multiple antennas or more
generally multiple inputs, multiple outputs. The maximum diversity to be gatheredis limited by
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nn s|{1 2 3 4 5 6 7 8
1 |1

2 |2 2

3 |2 3

4 | 3 4 4

5 | 3 5

6 |4 4 6 6

7 | 4 7
8 |5 6 8 8

Table 3.3: Diversity order from modi ed singleton bound versusnumber of transmit antennas
n; and spreadingfactor s, for Rc = 1=2,n, = 1and no = 1.

nn s{1 2 3 4 5 6 7 8
1 2 2
2 3 4 4
3 4 6 6
4 5 6 8 8
5 6 10
6 7 8 9 12
7 8 14
8 9 10 12 16

Table 3.4: Diversity order from modi ed singleton bound versusnumber of transmit antennas
n; and spreadingfactor s, for Rc= 1=2,n, = 1,nc = 2.

the channel properties, the linear precading spreading factor, the minimum Hamming distance
of the binary code and the singleton bound of the global code. The preseried interleaver leads
to the conceptof full diversity BICM sincethe systemexhibits a predetermined diversity for all
the parametersof the consideredblock fading channel.

3.4.1 The BICM diversity with convolutional codes

On fading channels, the diversity of a coded modulation can be de ned by the number of in-
dependert channel states a ecting a codeword. More precisely the diversity is the exponert
assaiated with the signal-to-noiseratio in the bit error rate expression.

We usually consider convolutional codeswhen designing BICM, becauseof their exibilit y.
A transition in the trellis of a convolutional code is de ned by a state, K ¢ information bits at
the code input and N¢ coded bits at the code output. The coderate is Rc = Kc=aN¢. A path in
the trellis is equivalent to a codeword. The length of the path in the trellis is L ¢ branches,i.e.,
a codeword haslength L cN¢ coded bits. The protection of the information bits comesfrom the
code trellis structure since only predetermined transitions are allowed. Howewer, some errors
occur when the noise makes at least one other path more reliable (in the Euclidean distance
sense)than the transmitted path. On binary symmetric channels,the most probable error path,
called minimum error path, hasthe smallestnumber of di erent coded bits from the transmitted
path. The number of bit errorsin this caseis equal to dymin , the so-calledminimum distance
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of the code (in the Hamming sense). We will call \neighbor path" a path in the trellis that
di ers from the transmitted codeword exactly by dymin bits. On fading channels,a neighbor is
a codeword minimizing the Euclidean distance. This is not always equivalent to minimize the
Hamming distance, but equivalencecan be assumedto be an averagebehavior.

The maximum acdhievable diversity dmax is upper-bounded by the number of independert
laws generatedby the channel n¢n;nc, the minimal Hamming distance of the binary code, and
the singleton bound of the global code:

k k

j
e (I Rg)+ 1 ;ninen;snedymin (3.51)

J
Omax Min sn;

3.4.2 Interleaver design criteria

A simple way to theoretically estimate the bit error rate is to usethe union bound. This upper
bound is the sum of the pairwise error probabilities, it is dominated by the minimum error
paths. In order to be able to e cien tly designthe system, we make the optimistic assumption
that improving the dominant term of the sum will improve the global sum and that the gain
obtained on the union bound will also be obtained for the exact bit error rate.

Let us considera neighbor in the trellis. It is de ned by a block of IcN¢ coded bits, dy min
of which are erroneous(l¢ is the code constraint length). We can say that a good protection is
given by the channel if these coded bits seea maximum number of independert channel states.
This is the fundamental concept of diversity exploitation. The minimum Hamming distance
of the code is chosento be non-limiting. The singleton bound is a limiting factor: it can be
increasedby judiciously choosing the linear precoding. Without this space-timespreading, the
interleaver should be designedto adhieve the singleton bound diversity order.

Consideringa generaln; n, MIMO block fading channel with n¢ blocks, we collect a min-
imum diversity equal to n, at the detector output, and, sincethe decader cannot degradeper-
formance, the reception diversity n, is always obtained at the decader output. The challengeis
to collect the transmissiondiversity given by the n; transmit antennasand the n; channel states.

In order to achieve the full diversity, the erroneousbits of an error evert should be equally
distributed over all the transmit antennasand channeltime realizations. Moreover, the interfer-
enceof thesebits in the time periods should be limited to rst enhancethe diversity and then
the coding gain.This will be explainedin the following.

Let us consideran error event with w erroneousbits. Assumethat the maximum diversity
order is dmax. If W dmax, We can expect to achieve full diversity if at least dnax bits over
w seethe dmax independen fading random variables. In a time period k where more than one
erroneousbits are transmitted, the transmitted and interfering points are called xx = zxHy

and xE = zEHk. When computing ML decading or APP detection, we are interested by the
equivalent BSK de ned by the two points xx and x(k). It was shawvn that the vector dz(kz—kéngk
has n, independen circular symmetric Gaussianvariables componerts. We can conclude that
ewven if the erroneousbits are transmitted on di erent antennas, the generateddiversity is n;.
Howewer, if the erroneousbits are transmitted on di erent time periods and seedi erent fading

random variables, a higher diversity is achieved.
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For a given diversity, the coding gain is given by the distance betweenthe transmitted code-
word X and the considerederroneouscodeword X © If all the w erroneousbits are transmitted
overj dierent time periods, the number of non-null componerts of X X %is n,j. On average,
the distanceis maximizedif j = w. An optimal coding gain is obtained if the Gaussianvariables
componerts of a multi-dimensional vector have samevariance. We can approac suc a property
by uniformly placing the erroneousbits over all the random variables.

Moreover, if no interferenceis obsened betweenthe erroneousbits in the time periods, the
situation is very similar to the geniecondition. In the caseof a su cien t number of independert
laws, we can use optimized mappings that exhibit a large amount of coding gain under perfect
convergenceof the iterativ e processing. In such mappings, the bits are not equally protected,
the interleaver must then distribute the bit positions over all the available fadings. Such remarks
lead to the fundamental designcriterion of the interleaver:

Prop osition 5 In order to take the advantage of the available diversity and coding gain given by
the concatenation of a BICM and a block fading MIMO channd, the interleaver shoulduniformly
place consecutive bits on all the channd time realizations, transmit antennas, bit positions of the
mapping and prohibit the interference of these consecutive hits in the time periods.

We will now build, step by step, an interleaver that satis es sud conditions. First, we will
build an interleaver that enablesto achieve maximum diversity onann; n, quasi-static MIMO
channel with BPSK input. Then, we will extend it to the caseof higher spectral e ciency
modulations and to block fading channelswith n. channel states.

3.4.3 Interlea ver design for quasi-static MI MO channels with BPSK input

On quasi-static channels, only one channel realization is experiencedby a codeword. Let us
consideran error evert in the code trellis wheredy coded bits di er from the transmitted code-
word. All error everts are supposedto have a non-null probability, the interleaver should be
designedfor any of them. Let us ensurethat L N¢c successie coded bits, L N¢ being the length
of an error path with L, branches,are transmitted by all the n; transmit antennasin the same
proportion. The maximum transmit diversity is upper bounded by n¢, dymin and the singleton
bound.

The singleton bound cannot be improved with a designedinterleaver. However, we will de-
signit in the aim of achieving the n{n, diversity, keepingin mind that the maximal achievable
diversity is upper-bounded by the singleton bound.

Another condition to optimize the performanceis the non-interferenceof the erroneousbits
in the time periods. In the maximume-likelihood sensetwo interfering erroneousbits can either
degradethe diversity or coding gain. When consideringthe iterativ e processing,a time period
corresponds to a channel node in the graph. Ideally, the consideredbit probabilities should be
independen, practically, coming from branchesfar away from ead other in the trellis. These
conditions lead to a designcriterion for quasi-static channels,well known in the space-timecod-
ing theory asthe "rank criterion” and applied hereto the BICM interleaver.

We want to design an interleaver ensuring that consecutive bits are mapped on di erent
symbol times over all the transmit antennas. To achieve this property, we demultiplex the L cN¢
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Figure 3.11: NRNSC 7,5 trellis

coded bits into n; vectors of length L cN¢c=n;. Each of the n; sub-frameswill be transmitted on

a predetermined transmit antenna. However, the demultiplexing step is not simply processed
selecting every n; bits. Indeed, we can obsene on Fig.3.11 the trellis of the half-rate, four

states NRNSC 7;5 code. In bold lines, we drew the error event leading to minimum weight

(dumin = 5) and error events maximizing the number of brancheswith a constart weight (e.qg.,

6 and 7). Sud error everts are good candidatesto frequertly occur at high signal-to-noiseratios,

and we remark that the error positions (represenied by a "1") are not equally distributed on the

5 errors over 7 would be transmitted onthe rst antennawith a classicaldenmultiplexing scheme.
In order to equally distribute the erroneousbits on the n; antennas, for all convolutional code
parameters, we apply the demultiplexing:

0 i<n;0 j<LeNe=ng;Vi(j) =V ((i+])modni+jni) (3.52)

where V is the codeword to be demultiplexed, V; is the i-th denmultiplexed frame, and :mod :
the modulo operator. This ensuresthe uniform distribution of the erroneousbits over the n;
transmit antennasall alongthe transmitted frame. Oncethe n; framesare extracted, ead frame
is interleaved separately and transmitted over an antenna.

We now have to limit the erroneousbits interferencein the time periods. First, we can
assumethat only simple error everts occur. If ead of the n; framesis interleaved by a di erent
interleaver, we cannot cortrol the interferencesbecauseof the randomnessof ead interleaver.
On the contrary, if the sameinterleaver is used,the n; consecutiw bits are in the samepaositions
of the interleaved frames, we can limit the interferenceby sliding ead frame by onebit position
and transmit all the frames serially on their assaiated antenna. This ensuresthat bits in the
same position in the interleaved frames will not be transmitted in the sametime period, but
doesnot guarartee that the consideredL | N¢ successie bits are transmitted over di erent time
periods.

To satisfy this strong condition, we usea particular S-Randominterleaver which guarantees
that any L, successie bits in the interleaved framesare not transmitted during the sameblock
of n¢ time periods. If we considerthat bit position i is placedat position (i) by the interleaver

s, we should have

s() g s +1)

O j<LcNe=Enw L0 i< Ly
J cNc=n [ [ N nt

(3.53)
We nd sud an interleaver by choosingit at random until the conditions are satis ed.

Each of the n; framesV; are interleaved to Vi°.

0 i<n;0 j<LcNemng V°( s()) = Vi) (3.54)
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Figure 3.12: Basic interleaver designfor N; inputs, a frame sizeS, and a separationL,

Then, the bits of the interleaved frame V.° will be placedin another sub-frame V,%° before the
serial transmission on i-th antenna, with the following method: Blocks of n; bits of \/i0 are
transmitted in the corresponding block of n¢ time periods, with a time slide equalto i and a
modulo n; to stay in the block of n; time periods (cyclic shift of i positionsin a block of size
ne).

0 i<n;0 j1<LcNg=nZ0 ja<ng V(i +j2)mod ne+ jing) = V(2 + jiny)
(3.55)

3.4.4 Basic interlea ver construction

In the following, we considera basicinterleaver | y, s, .., designedfor N; channelinputs, aframe
sizeS) and a separation L. It should satisfy the conditions preserted above for diversity and
coding gain optimizations. It will be usedagain in the following, this explains the intro duction
of the general notation Iy, s,.., . However, in the previous subnewsection,we consideredthe
I ni:LeNeiL, interleaver.
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In Fig. 3.12, we preser the basic interleaver with N = 4 channel inputs, the bits of the
codeword are coloredin 4 di erent colors, ead one corresponding to a speci ¢ channel input.

length S, =N, aspreserted before. Step 1 correspondsto this demultiplexing. Each vector V; of
size S| =N, is then interleaved by the S-randominterleaver in step 2 into a vector V% In step 3,
we build the N, S, =N, matrix asthe concatenationof S; matrices of sizeN, N,. The rst
row of an N; N, matrix contains the N, rst valuesof the vector VOOfor channelinput 1. The
secondrow cortains the rst N; valuesof the vector Vfor channelinput 2, shifted by 1 position
modulo N,. Rows 3 and 4 are built from vectors V2 and V{ similarly. All S;=N? matrices of
sizeN, N, are constructed the sameway using the following bits of the N, vectors Vio.

In this last step, we seethe space-timedistribution for the N, = 4 rst bits of ead interleaved
frame, eat channelinput is represerted by a row. We can notice that the cyclic diagonal thread
on the space-timedomain in ead block is very similar to the threaded algebraicspace-timecodes.

Finally, the N, S, =N, matrix is transmitted on the channel with a space-timerepartition
on transmit antennas and time periods given by the rows and columns, respectively.

In a block of N bits transmitted on one of the N, channel inputs, the bits are separated
by more than L, bits in the demultiplexed frame, which correspond to a bit separation equal to
Ny (L, 1)+ L;mod N, in the codeword. The cyclic diagonal repartition of the bits in oneblock
of N, time periods guararteesthat the bits contained in one symbol period, i.e., in 1 column of
the nal matrix, were originally separatedby N,(L; 2)+ L, mod N, + 1 bit positions before
interleaving. Moreover it guaranteesthat N, (L, 2)+ L;mod N, + 1 consecuti\e bits before
interleaving are equally distributed on all transmit antennas and mapped on di erent symbol
periods. Practically, the parameter L, of the S-random-like interleaver should be maximized in
order to take the long error everis into accourt.

3.4.5 Interleaver design for quasi-static MI MO channels with M -ary input

We have preserted an interleaver for MIMO quasi static channelsand BPSK modulation. This
interleaver tries to exploit the maximum diversity and to limit the interference of erroneous
bits in the time period. The extension of sud interleavers is straightforward for higher spec-
tral e ciency modulations if we only consider the diversity criterion. Howewver, it has been
shawvn that labeling optimisation allows high coding gain under iterativ e decading on ergadic
channels. In somecases,there is a su cien t transmit diversity order in the channel to exploit
the mapping gain, but the lessthe diversity order is the more the interleaver hasto be optimized.

When the geniecondition is satis ed, only onebit is changedin atime period, sothe labeling
can be optimized to maximize the averagedistance of the equivalent BSKs. In order to take
advantage of the coding gain given by the optimized labeling, we have to designthe interleaver
sud that a genie-like situation occurs.

Erroneous bits in an error path should be dispatched on di erent time periods and equally
transmitted over all the transmit antennas and bit positions. Moreover, the transmitted bits
should not interfere in the time periods. These conditions are satis ed by the | mn,.LoNeiL,
interleaver.

It is clearthat the diversity is more important than the coding gain. If an error event hasa




3.4 Interleaver optimizations 67

Hamming weight w < mny, all the sub-framesmn; cannot carry an erroneousbit. The n; rst
rows of the last interleaver matrix should be transmitted on the n; transmit antennas and on
the rst mapping bit, for example. Then the secondblock of n; rows will be transmitted on the
secondmapping bit, and soon.

3.4.6 Application to linear precoding

When a linear precoder is usedto recover a part of the transmit diversity, the new channel
matrix SH hassn; sn; rows and columns. If at most one erroneousbit is obsened on eat
time period, optimal linear precaders have been optimized in 3.2. We have shawvn that the
precaded channel output is divided into independert blocks, we modify the order of the rows as
follows (s°= s=n¢.s and N2 = s%)

8l> 2 [1;ny=s;8I1 2 [1;587; 8t 2 [1;nc:s]; 8i 2 [1;89;8v 2 [1;s9;
St D= laii(le D=l Dnck(t Dt = @ i
plv_toexp 2 (i 1) —xprm*” 14(. 1')\lsto+(t DE 1) g vt

and O elsewhere.

(3.56)

Now, the n;=s" consecutive rows of S lead to independert row vectors S|Hy that look like a true
multiple antenna channel. In this case,the interleaver | smn,.L.nq:L, IS designedfor diversity
and gain exploitation. As presened in the previous subsection,the sn; rst rows of the last
interleaver matrix will be transmitted on the rst mapping bit, and so on.

3.4.7 Interleaver design for block fading Ml MO channels

For block fading channels,n. di erent channelrealizations occur during the codeword. Note that
ne = 1 corresponds to the quasi-static context and ng = LcNe=n; to the ergadic context. We
directly apply the two design criteria described above to generalizethe conditions that should
be satis ed by the BICM interleaver: In order to take advantage of the transmission and time
diversity given by the transmit antennasand the n. di erent realizations of a block fading MIMO
channel, the interleaver of a BICM should place consecutive bits on di erent time periods and
equally distribute them amongall transmit antennasand all n; channel realizations.

The n¢ channel states are grouped together into blocks of length L cNc=(ncny) time periods. We
will extract n; sub-framesfrom the codeword , eat sub-framewill be transmitted on one of the
n¢ blocks, and only seeone channel state. We can interleave ead sub frame with the interleaver
optimized for MIMO quasi-static channel to exploit the n; transmit antenna diversity.

The demultiplexing of the n; framesis done in the same manner as for the transmit antenna
separation for the samereasons.

0 in,<ng0 j<LeNe=(nen);Vi™(j) =V ((in. + j)mod nc+ jnc) (3.57)

This demultiplexing/in terleaving is su cien t to exploit the time diversity. Indeed, there is no
interferencebetweenthe symbols applied to the di erent channel statesin opposition to symbols
transmitted on di erent antennas, bits positions and time periods.

3.4.8 Interlea ver design: algorithm

We will presen the algorithm for an easy implementation of the interleaver designedfor a
2™ QAM , precaded by ansny sn; matrix, and transmitted onann; n, MIMO block fading
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channelwith n¢ blocks. A codeword contains L cN¢ coded bits, ead sub-frameis L cNc=(smn¢n;)
bits long. Let us rst considerthe pseudoS-Randominterleaver for ead of the smn¢n; sub-
frames. It should guarantee that any L, successie bits in the interleaved sub-frame are not
transmitted during the sameblock of smn; time periods. If we considerthat bit position i is
placed at position (i) by the interleaver ¢, we should have

: _ 0 i : s(J) s( +1)
0O j<LcNes(smng) L;0 i<Ly; smn 6 smn; (3.58)

We can nd sud an interleaver by choosingit at random until the conditions are satis ed. Let
Vin, a vector of LcN¢ coded bits, be the input of the interleaver, and V,,; the output vector to
be given to the mapper.

Algorithm 1. Optimized interleaver for precoded Ny N, MIMO channelwith n¢ blocks,
2" -QAM
input : A codeword Vi, of sizelL cN¢ coded bits.
output : A frame Vg of sizeL cN¢ bits, ready for serial to parallel and mapping
cornversion for transmission on the n; transmit antenna.
init ] LcNe=ng, Lo L1:(mNt)

1 for k=0ton, 1ldo

2 for i= 0to mN;y 1do

3 for j=0to L, 1do V2(j) Vin(( + (ing+ k))mod mN¢nc+ jmNnc)
4 for j=0to Ly 1do Vs( s(j)) Va(j)

5 for j = 0to L,=(mN;) 1do

6 for v=0to mN; 1do

7 L | Va((v+i)mod mN¢+jmNy)  Va(v+ jmNy)

8 for j=0to L, 1do Vs(i+jmNy) Va())

9 for i= 0to L1=(mN{) 1do

10 for j =0to Ny 1do

11 foru=0tom 1do

12 L | Vour (u+ jm+imN¢+ kLi)  Vs(j + uN¢+ imN )

3.4.9 Application to turb o-codes

The BICM precader and interleaver have been designedto provide full-div ersity and optimal
coding gain for any pairwise error probability. Howewer, the nal error rate is given by the
probability to get out from the Voronoi region. The facets of this decisionregion belongto the
median hyperplanesof the BSKs consideredin the pairwise error probabilities. When using con-
volutional codes,the number of neighbors increaseswith the frame length whereasthe minimal
Hamming distance dy min remains constart. The minimal Euclidean distancein Gz dependson
dn min » We can deducethat the frame error rate will increasewith the frame length. The idea
isto nd a code whoseEuclidean distance increaseswith the frame length. If the performance
gain provided by the Euclidean distance increaseis greater than the performance attenuation
provided by the number of neighbors increase,the frame error rate will decreasewith the frame
length. It hasbeenshown in [37][15] that turb o-like codes can achieve such a proposition over
block fading channels. We usethe coding scheme presened in Fig. 3.13. Information bits are
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encaed by an RSC1 encader. The information bits are interleaved by the turb o-code inter-
leaver ¢, encalded by an RSC2 encader. The coded bits of RSC2 are then de-interaleaved by

i 1. This last step is not processedin classicalparallel turb o-code schemes,but it allows us
to perfectly cortrol the position of the information bits and assaiated coded bits. Indeed, the
preseried optimized channel interleaver is designedusing the simple obsenation that the error
everts are localized. Then a 1/2 puncturing is computed on ead coded bit stream, followed by
a multiplexing. Let b(i) denotethe i-th information bit, c;(i) denotethe i-th coded bit at the
output of RSC1 and cy(i) the i-th coded bit at the output of RSC2. The nal coded stream

has the following form

b(0) ¢1(0) b(1) c2(1) b(2) c1(2) b(3) c2(3) b(4) c1(4) K(5) c2(5) (3.59)
Information bits
RSC 1 Coded hits *
C1
[5) RSC 2 P 1| Coded bits ¢
t t c2

Puncturing Multiplexing
Figure 3.13: Parallel turb o-cade encader

The error events occur locally at dierent positions in the frame. This induces that the
optimized interleaver is directly applicable.

3.5 Simulation results

In this section, we consideriterativ e joint detection and decading of the BICM, the APP detec-
tor is exhaustive. Let us considera2 1 quasi-static (n¢ = 1) MIMO channel. We useNRNSC
7;5 or NRNSC 3;2 codeswith rate 1/2 and length 1024. From the singleton bound, the full
diversity can be achieved without linear precoding. We shov on Fig. 3.14 the performance
obtained with a classicalPR interleaver and the performance provided with the optimized in-
terleaver. We notice that the full diversity order is only achieved with the optimized interleaver,
the performanceslope is equal to the outage probability slope. In general,the PR interleaver
provides a diversity n,, i.e., it doesnot allow to collect any transmit diversity order. In this
gure, we seethat the 7;5 NRNSC code provides a high coding gain with respect to the 3;2
NRNSC code. In general,we cannot say that taking a better code always provides better frame
error rate. Indeed, we sav that whenw  n¢n¢ the full diversity of the consideredpairwise
error probability can be achieved with an ideal interleaver, and the remaining w ngn. BSK
distancesare uniformly distributed amongall the channel states. A better error correcting code
provides greater Hamming weights w® that do not enhancethe diversity but the coding gain.
Howewer, the coding gain could be inferior to the degadationinduced by the increasednumber
of neighbors. A future researt will focus on this point.

In Fig. 3.15, we show the performanceof a rate-1/2 7;5 NRNSC code overa 2 1 MIMO
block fading channel with n; = 1 and BPSK input. The full diversity and optimal coding gain
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are obtained at the last iteration with the optimized interleaver. We obsene that the DNA cy-
clotomic precoder assaiated with the optimized interleaver provides a similar coding gain and
diversity asthe optimized interleaver, which con rms that the optimal coding gain is near from
the ideal coding gain when an ideal interleaving is available (the existencecondition is given by
the singleton bound). However, we can obsene that the rst iteration performancesare much
more better with the linear precoder than with the optimized interleaver alone. Clearly, there is
no advantage to usea linear precaoder when processingiterativ e decading becausethe linear pre-
coding increasesthe detection complexity. We show the performance obtained with the golden
code [6] which is known to be the best full rate code for two transmit antennas. However, this
is not a DNA code becausethe equal nhorm property betweenthe non-null nucleotidesis not
satis ed. This producesa slight lossin coding gain.

Fig. 3.16illustrates the performanceof a 7;5 RSC turb o-cade overa 2 2 quasi-static chan-
nel with QPSK input and PR or optimized interleavers. Two di erent frame length 256 and
2048 coded bits are tested. With the PR interleaver, the full diversity order 4 is not achieved,
and the performancedegradeswith an increasing frame length (as with classicalconvolutional
codes). If the optimized interleaver is used,the full diversity order is achieved and the error rate
is reducedwith the increasingframe length. The turb o code nally performs at lessthan 1 dB
from the outage capacity with Gaussianinput.

Fig. 3.17 represents the performance of a 7;5 RSC turb o-code over a 4 1 quasi-static
channel with BPSK input and PR or optimized interleavers. Two di erent frame length 256
and 2048 coded bits are tested. First, we can obsene that without linear precoder and using a
PR interleaver the full diversity gain is not achieved. Asymptotically, the obsened diversity is
n, = 1, but for low SNRsthe performanceis closeto the performance given by the optimized
interleaver. This can be explained becausethe turb o-cade producesa large amount of errors
for low SNRsand the probability of satisfying the ideal interleaving condition is high. However,
when the number of errorsis low at high SNRs, it is crucial to placethe few erroneousbits over
all the channel states. This behaviour is put in evidencewhen increasingthe frame length. The
maximum diversity provided by the singleton bound needsat leasts = 2. This is con rmed
by the simulation and again we can obsene that the error rate is decreasedwhen increasing
the frame length. The 4 1 MIMO channel experiencesa large amourt of interferencebetween
the transmit antennas, however we achieve 2:5 dB from the Gaussianinput outage probability.
Hence,increasingthe number of receive antennas or observing a greater number of channel re-
alizations would allow to achieve performancecloserto the outage probability.

Fig. 3.18illustrates the the performance of NRNSC codes (left gure) and parallel turb o-
codeswith RSC constituent codes (right gure) for a given signal-to-noiseratio equalto 15dB
over a 2 1 quasi-static MIMO channel. We can obsene that the frame error rate increases
with the frame sizewhen using NRNSC codeswhile it remains constart when using turb o codes.
This strong property canin part be explained becauseof the interleaving gain of the turb o-cade
but it needsfurther researt to be clearly expressed.

Conclusions

We have preseried bit interleaved coded modulation optimizations for multiple antenna channels.
We achieve near capacity on ergadic channelsthanks to turb o-codesor optimized interleavers.
It is shawvn that the designfor ergadic channelsis much easierthan for block fading channels. In
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Figure 3.14: Rate-1=2 NRNSC codes, QPSK modulation, 2 1 MIMO channel, n. = 1, 10
iterations. L:N. = 1024.

this last case,the full diversity is the rst objectiveto be achieved by the receiwver. The singleton
bound givesthe maximum diversity the decaler can recover and the minimum spreadingfactor
that guararteesfull diversity. Next the coding gain hasto be optimized usinga well chosenbinary
code, an optimized interleaver and an optimized linear precoder. Finally we have preseried a
modi cation of the turb o-codesin order to achieve near outage performance. The error rate
decreasesith an increasingframe length.
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Figure 3.16: Rate-1=2 RSC 7; 5 turb o-cade, QPSK, 2 2 MIMO channel, nc = 1, 15 iterations.
Parity ched bits of the secondconstituent are multiplexed via the inverseturb o interleaver.
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Parity ched bits of the secondconstituent are multiplexed via the inverseturb o interleaver.
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Chapter 4

BICM receivers for Ml MO channels

I ntro duction

In order to improve the data transmission rate over fading channels, most of new transmission
systemsuse a set of multiple antennas at the transmitter and receiver side. Howewer, the re-
ceiver hasto be sophisticated enoughto recover the large amourt of data received with a large
amournt of interference. Iterativ e techniques, suc asiterativ e joint detection and decading, seem
to be a judicious choice for high performancereceiverswith tractable complexity. This requires
soft-input soft-output detectors and decaders. However, when using high spectral e ciency

QAM modulations with multiple transmit antennas, the classicalexhaustive soft list detector
becomesintractable. Recerily, a sub-optimum soft list detector has beenproposedin [41], but
someweaknessesre still existing to achieve near optimum soft detection performance. We will

preseri somemaodi cations to the list construction and complexity reduction in the caseof block
fading channels.

In Section4.1, somebasicson lattices are presered, the multiple antenna (MIMO) channel
lattice model is expressed. Some simple lattice theory tools are also introduced, they will be
helpful to describe and optimize the maximum likelihood SphereDecader presened in Section
4.2. In Section 4.3, we presen the soft-input soft-output (SISO) spherical list detector and its
application to MIMO channelsjoint detection and decading. In Section 4.4, the SISO-MMSE
described in [28] is modi ed for MIMO channelswith somecomplexity reductions. Complexity
and performance comparison betweenthe presenied SISO detectors is discussedin section 4.5
to concludethis chapter.

4.1 Basics on lattices

41.1 MI MO channel equivalent lattice

Lattice theory and coding theory are applied to e cien tly encade and decade information in a
digital transmission system with multiple antennas. For someinformation theoretical reasons
(see[77]) it is assumedthat ny = n; throughout this section.

Lattice theory [22] is a powerful mathematical tool to geometrically represen the modulation
and channel concatenation. It helps us to better understand its behavior, in order to designa
good modulator and its corresponding demaodulator. Since multi-dimensional QAM constella-
tions are subsetsof Z", we canwrite z 2 Z2"t. Let ns denotethe dimensionof the real Euclidean
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space,
Ns=2 nnt=2 ny (4.2)

The equality x = zH is now extendedto the real spaceR"s to get
X=2zM ;x2R";z2 2" 4.2)

Therefore, the MIMO channeloutput y = x+ is obtained by perturbing a lattice point z with
additive white noise . A lattice is a discrete subgroup of R"s, i.e. it is a Z-module of rank
ns. In (4.2), the lattice  is generatedby the ng  ng real matrix M , which is derived from the
channel matrix H by the following simple expression

0 1
<hq1 =hq1 Ll L <h1nr :hlnr
N i <hj  =hj N D
M = J I 4.3
i i = hy <hj - o (4.3)
<hpni1  =hna <hnin,  =hnen,
= hntl <hnt1 = hntnr <hntr‘|r

When z is restricted to a nite QAM integer constellation, x belongsto a nite lattice con-
stellation denoted by . For example, if n = n, = 8 antennas and m = 4 (16-QAM), the
constellation  at the MIMO channel output has 2™t = 232("  4) billion points. Each point
in  has a binary label of 32 bits. Before combining an error-correcting code with a digital
modulation for useon a MIMO channel, we rst analyzethe main parametersof the lattice
assaiated with multiple antenna channels. Such a geometricalanalysisis complemertary to the
one made by information theory concerning Shannoncapacity of MIMO channels.

4.1.2 Important lattice parameters

The matrix M is called a lattice generator matrix of the lattice ( M ). Let P be the set of
points that satisfy
P =fx2R"=x= M ; 2 [0:::1]"g (4.4)

P is called the fundamertal parallelotope of (seeFig. 4.1).
The rst lattice parameterto be consideredis the fundamental volume vol(), which repre-
serts the volume of the fundamertal parallelotope de ned by

vol() = jdet(M )j = P det(G) (4.5)

wherethe Gram matrix G de ning the quadratic form Q(z) assaiated with the lattice is related

toM by X

G=M MYjixji’=2Gz' = Q(z2) = gjzz (4.6)
i

The secondlattice parameter is the minimum Euclidean distance demin () de ned by
demin () = g;_ipzjjpl P2jj P1;p22 ;plé p2 (4.7)

The problem of computing de min () is hard (it is NP-complete). Thus, we suggestthree di erent
methods to get an estimation of the minimum Euclidean distancein :
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Figure 4.1: Lattice parameters.

1. Therowsof M areaZ-basisfor . Readthe ns Euclidean norms in the lattice basis and
keepthe minimum. This yields an upper bound on deg min (). In practice, we equivalertly
seart for the minimum elemen of the Gram matrix diagonal.

2. Reducethe basisM by nding another lattice basiswith shorter vectors. We suggesthere
to usethe e cien t LLL reduction algorithm [54], or the more complex Korkine-Zolotarev
algorithm ([50]). This yields a tight upper bound on dg min (). If @ Minkovsky reduction
can be processedwe nd the exact value of dgmin ().

3. Find the exact minimum distance by enumerating lattice points inside a spherecertered
on the origin, then take the minimal norm of a non-zeropoint. We suggestthe application
of Short vectors algorithm [64] to determine the exact value of dg min ().

Of course,the three methods above are listed in increasingorder of complexity. As shown later
in this study, the estimation of demin () helpsto acceleratethe SphereDecader algorithm [85]
usedto nd the maximum likelihood (ML) lattice point.

Given the lattice minimum distance and its fundamertal volume, it is possibleto derive the
normalized squaredminimum distance, called fundamental gain, given by

- dzmin()
() = V0E|()72=ns (4.8)

Usually, the fundamertal gain is expressedn decibels, g = 100gio( ). A lattice spherepack-
ing is non-denseif gg < 0, i.e. the lattice is lessdensethan the cubic integer lattice ZZ. When

a8 > 0, the denselattice is assaiated with a good MIMO channel that may perform better
than an AWGN single antenna channel. Sudc a performance comparisonshould also take into
accourt the kissing number of  [22] which is completely random and di cult to estimatein a
multiple antenna channel context.

Nevertheless,the three above-menioned main parameters are su cien t to understand the
geometricalbehavior of . Tables4.1 and 4.2 shav the main parametersof a MIMO lattice and
somestatistics related to these parameters.

As expected, the lattice minimum distance increaseswith the number of antennas. Indeed,
the channel diversity order is proportional to the number of antennas. The percertage of dense
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Number | d2 . (exact) | dZ,, (LLL) | dZ .. (Gram) (dB) (dB)< 0
of antennas mean/v ariance mean/v ariance mean/v ariance mean/v ariance Percentage
2 0.979/0.542 | 0.979/0.543 | 1.250/0.687 | -1.10/2.04 78.1
4 1.607/0.576 | 1.608/0.579 | 2.182/0.803 | -0.65/1.42 66.9
8 3.867/1.004 | 3.875/1.019 | 4.488/1.272 | +0.76/0.75 171
16 9.719/2.231 | 9.734/2.274 | 9.770/2.309 | +1.98/0.59 1.15

Table 4.1: Main lattice parametersof the MIMO channel (rst table).

Number | dZ2 . (exact< LLL) | dZ, (LLL < Gram) | dZ . (exact< Gram)
of antennas Percentage Percentage Percentage
2 0.19 40.02 40.07
4 0.92 61.60 61.86
8 3.18 53.82 54.67
16 2.36 4.79 5.64

Table 4.2: Main lattice parametersof the MIMO channel (secondtable).

lattices is surprisingly high, especially for 8 and 16 antennas. This predicts a performance
extremely closeto the Gaussianchannel when ny = n, is large. If the channel matrix H is
known at the transmitter, it is possibleto take a water lling approad where the information
instantaneousrate is proportional to ().

Two important results may be deducedfrom Table 4.2:

1. The LLL reduction algorithm is extremely e cien t in nding the minimum distance of a
MIMO lattice. The failure percertage varies from 0.19%to 3.18%only

2. The simplest method (method 1 basedon the diagonal of the Gram matrix) seemsalsoto
be quite e cien t for a large number of antennas, (only 5.64%failure with 16 antennas)

Finally, Fig. 4.2, 4.3 and 4.4 give more details on the distribution of demin () and () versus
the number of antennas. Note that in Fig. 4.4, in the caseof 16 antennas, is limited to -1dB
for non-denselattices and upper bounded by 4dB for denselattices. For comparison, we recall
that ny = n, = 16 antennas correspond to a lattice in R32 for which someknown structured
denselattices have a fundamental gain equalto 6dB.

4.1.3 Lattice generator matrix QR decomp ositions

A matrix decomposition is a transformation of a given matrix into a canonicalform. For exam-
ple, we cite LU, Singular Value, eigervalue, and Schur decomgpositions. In this chapter, we are
interested in QR decompositions of M

Let M be a square matrix, there exists a lowe triangular matrix
(QQ'=1) suhthatM = Q.

and a rotation matrix Q

Let us rotate the rst basisvector of ( M ) to t the rst Euclidean basis vector. The
applied rotation is called Qn,, and we de ne the rotated matrix 1= M Q.. The rst row of
1 hasonly onenon-null coe cient on the rst position. We extract ang 1 ng 1 matrix
from the last ns 1 rows and columnsof 1 and apply a rotation Qn, 1 that aligns the rst
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distance dg i, - dg ,n for 4 antennas. in the MIMO channel.

basisvector to the rst ns 1 dimensionalspace. This operation repeatedns 1 times leadsto
a lower triangular matrix, via ng 1 rotations. The global transformation is a rotation Q:

=M Q=M Qn.diag(l1:1;Qn, 1) :::diag(lk:k; Qns k) :::diag(lngng) (4.9)

wherediag(l«.x; Qns k) is a block diagonal matrix with two blocks: ak k identity matrix and
ans k-dimensional rotation.

In order to e cien tly processthe QR decomposition, we use the simple obsenation that
a rotation is a Householderre exion R = | 2mE_, m-, where m, is the normal vector of

the re exion hyperplane. We seea geometrical represeniation of a 2-dimensional Householder

re exion is 1

m- = p —
kxk(kxk + jx1j)

[X1 + sgn(x1)kxk;X2;: 15 Xn] (4.10)

We apply the Householderre exions to compute the transformation of the M and | matrices,
respectively leadingto  and Q. The complexity in ops (oating point operations, i.e., any
addition, multiplication, division, squareroot of a oating point variable) is 5n3=3+ 2n2+ 16ns=3.

Another method to compute is to apply a Cholesky decomposition of the Gram matrix

G=M M!' = QQ! t'= t: the main idea of the Cholesky decomposition is to obsene
that
. P,
80<i ng 2 = Gj P}:ll 2 (4.11)
8i<k ns; ki ii = G ,':11 Kj i (4.12)

which is su cien t to compute . This method exactly leadsto the samematrix as QR decom-
position. The algorithm complexity is 5n3=6  3n2=2+ 2n.=3 ops. Howewer, the Gram matrix

computation (ng(ns+ 1)(2ns 1)=2 ops) hasto be addedif Choleskyis usedfor M triangular
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(I 2mim,)

Figure 4.5: Householderre exion of x Figure 4.6: Basis reduction example.
with respect to an hyperplane de ned
by the normal vector m- .

decomposition. The algorithm does not allow an easy computation of the rotation matrix Q.
Somealgorithms do not require Q but a matrix  suc that:

81 i nm; i = & (4.13)

8l i<j n y o= L (4.14)
which is easily provided by the Cholesky decomposition.

4.1.4 Lattice reductions

The MIMO channelleadsto a random lattice structure. The basisof the lattice, givenby M is
not always the bestin terms of orthogonality and vectors' shortness. The procedure of nding
a better lattice basisis called reduction. This work was initiated by Gausswho proposedsome
algorithms for dimensionstwo and three, but the main three algorithms were proposedby

1. H. Mink ovsky
2. Ch. Hermite, enhancedby A. Korkine and G. Zolotare (KZ reduction, [50])
3. A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz (LLL reduction, [54])

No e cien t algorithms are known to nd the shortest non-zero basis of an arbitrary lattice.
Howewer, the LLL algorithm, proposedin 1982,computesan approximation of the smallestba-
sisin polynomial time.

Sincethe basisreduction is a basischange, the lattice remainsthe sameafter reduction and
the reduction matrix is unitary V:

My=VM ; (M)= (M) (4.15)

Fig. 4.6 preseris an example of basisreduction, the basis(M.1; M.2) is the reduced version of
(M1;M>). Wewill briey present somebasicknowledgeon lattice reduction that will help usto
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acceleratethe decading of MIMO channels.

First, let us recall the Gram-Schmidt Orthogonalization computation. Let (vi;:::;v,) bea
basisof R", an orthogonal basis(us1;:::;uy) is obtained by the recurrence:
_ X1 UiVjt X1
8i=1:::n; vi=uy | ij = Ui | i Vi (4.16)
j=1 j=1

i.e., recursively substracting the non-orthogonal componerts of the basis vectors. The Gram-
Schmidt Ortoghonalization is not a basisreduction sincethe resultant basis doesnot generate

the samelattice, the ; coe cien ts are not integers. Now, we presert the de nition of basis
reduceness:
A lattice basis(ug;:::;up) isreduced if 81 i<j n; Kk %
The Gram-Scmidt orthogonalization is directly applied into basisreduction:
1. Compute the Gram-Schmidt orthogonalization basis (u1;:::;un) of (vi;:::;Vn)
2. Compute the algorithm:
for i = 1::nf fOI’j = 1::1f u Ui b iij €Uj; for k = 1Zij ik ik b iij € j:k999

The algorithm complexity is %ne’ + n? ‘g‘n ops, but the provided basisis not particularly
orthogonal, no vector exchangeshave beenprocessed.However, we will seethat this reduction
will be very useful for lattice constellation decading becauseof the triangular property of the
reduction basis change matrix.

An e cien t algorithm to compute reducedbasisis the LLL reduction [54] which statis es a
sub-optimal reduction criterion:
A lattice with basis (ug;:::;un) and Gram-Schmidt orthogonal basis (v1;:::;Vyn), is said to be
LLL-r eduod if and only if:

81 J <i n; j i;jj %
P

. 2
. . . . 4 i 1
8l i n 1, jvij® 3 U =1 i+13Y]

This is a looser property than the one used by the more e cien t but more complex algorithm
KZ [50].

4.2 Sphere decoding

The spheredecader is an algorithm providing ML performanceon lattice channels. For exam-
ple, we can cite rotated rayleigh channels[13], CDMA or MC-CDMA [16] [17][18][21][31][87].
As described, the MIMO channel can also be seenas a lattice, the spheredecaler is well suited
for ML decding of the receiwed point.

A lattice point x 2 ( H) represens the signal received after a transmission over a MIMO
channel (or any lattice channel). Here, ( H) = ( M ) refersto the real lattice of rank ng
generatedby M , or equivalently by H. A maximum likelihood lattice decaler applied to the
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received point y = x + determinesthe nearestlattice point to vy, i.e., it minimizes ky  xk?2.
The point that minimizes the distance is called the closestpoint. In our case,x is perturbed
by an n-dimensional cngtered additive white Gaussian noise of variance Ny, the likelihood is
p(y=x) = ek Vv xk?=2No =" 2" Nj; maximizing the likelihood is equivalert to minimizing the Eu-
clidean distance, the maximum likelihood point is the closestlattice constellation point.

The so-called closestpoint problem is not straightforward, except for orthogonal lattices.
Indeed, in this trivial case,the lattice Voronoi region is parallelepipedic and the ML point is
found by simple independert quartization on ead dimension. When the lattice matrix is non-
diagonal, the Voronoi region is a complex polygon we cannot use for decading. The only way
to perform ML decdling is then to comparethe distanceky xk? betweenthe received vector
and a set of points including the ML point. If the transmitted set of points cardinality is small
enough, we apply an exhaustive computation of all the distancesky xk?. However, for high
spectral e ciency systems,or for lattices (in nite number of points), the exhaustive decading
is intractable. If we use a 2™M-QAM transmitted on n; transmit antennas, the constellation
cardinality is 2°™™, which leadsto a comparison of 21¢ = 65536 distancesfor 16-QAM over 4
transmit antennas.

The SphereDecader is a very e cien t algorithm to nd the closestpoint in a lattice [84][85].
The main idea of this algorithm is to enumerate all the lattice points x belongingto a sphere
S(y; Rs) of radius Rs certered ony, and to compute the distancesky xk?2. If no point is found,
the radius of the spherehasto be enlarged. Each time a point is found, the radius of the sphere
is reducedto the distance of this new point, which limits the number of enumerated points but
still ensuresthe closestpoint criterion.

4.2.1 The Sphere Decoder based on Pohst point enumeration strategy

The Sphere Decader based on Pohst strategy [64] was applied by Viterb o and Boutros (VB)
[85] to digital communications. The key idea is to enumerate lattice points inside an ellipsoid
in the integer spacecorresponding to a spherical seard region in the real space. This technique
is derived from the short vectors algorithm, initially thought up for the rst lattice shells’ point
erumeration. The point enumeration in Z"s is straightforward, processedby coordinate incre-
ment. The enumeration of the lattice points belongingto the sphereS(y; Rs) is equivalent to the
enumeration of the Z"s points belongingto an ellipsoid E(! ;Rs;M 1) certeredon! = ym 1.
This is illustrated in Fig. 4.7. The Z" points belongingto the ellipsoid satisfy the equation

z2 E(' ;Rg;M H\ z"s . k(! M KB=k M k¥ RZ (4.17)

where is the di erence vector betweenthe tested point z and the Zero-Forcing point ! . Unfor-
tunately, in the generalcase,M hasnon-zeroo -diagonal coe cien ts and all the componeris
are linked together, so this does not allow a simple enumeration without solving an ng  ng
eguation system.

Let us rotate the rst basisvector of ( M ) to t the rst Euclidean basis vector, which
is equivalent to make one ellipsoid axis collinear to the rst basisvector of Z"s as preseried in
Fig.4.8. The applied rotation is called Q1, andwedene 1= M Q; the new generator matrix
of ( 1). In this case,z; only occursin the rst coordinate x; of x 2 (1), with a scaling
factor 1.1. The ellipsoid bounds are directly linked to the spherebound along this dimension.
If we x the value of z;, the projection of the ellipsoid on the corresponding Z"s 1 spaceis
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Figure 4.7: Equivalencebetweena seart of points in a sphereand Z"s point in an ellipsoid.
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Figure 4.8: E ect of the lattice generator matrix decomposition into a lower triangular form on
the ellipsoid bounds computation.

always an ellipsoid, we turn one basisvector to one of the ellipsoid's axis thanks to the rotation
Q: leadingto > = 1Q2, and soon until the last dimension,which doesnot needto be rotated.
Finally, the lattice hasbeenrotated ng 1 times, the global transformation is a rotation Q and
transforms M into a lower diagonal matrix ~ via ng 1 successie rotations:

=M Q=M Q1Q2:::Qn, 1 (4.18)

We saw that if werotate M to , alower triangular matrix, the ellipsoid boundsare computed
recursively. We apply a QR decomposition of M to compute .

Let us now describe the maximum likelihood SphereDecader basedon Pohst strategy. As-
sume a set of transmitted points z belonging to a lattice constellation [zmin ; Zmax]™s. Sud
constellation is an homothetie of a 2™-QAM constellation of an nsg=2 ng=2 MIMO channel,
and enableseasiermanipulation (the symbol energyis divided by 4 with respect to the classical

QAM constellation). Using QQ! = I, the consideredsquareEuclidean distance for ML decading
is
kM Kk2=k Kk?= tt= Ggt' RE (4.19)
Using the lower triangular property of , anddening i = ,2, and i = = ii,wehave
that 0 1, 0 1,
Xs ~_ Xs Xs Xs
k K= @ ; ;A = i @+ P A (4.20)
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We want to enumerate all the points belonging to the translated integer lattice 2 (Z"s + 1),
this is done by rst computing the boundsof ,,

s s
R2 R2
—3— — 5 _ (4.21)
Ns;Ns NsiNs
and recursively deducingthe other bounds, assumingf y+1;:::; n,g known,
Y P P 2
! R§ T N S IR
(4.22)
k;k
Y P P 2
P, PRE i i i+ S
Kkt iZke1 ki i (4.23)
k;k
Substituting ¢ = !¢ zx and using zx 2 [0; Zmax ], We obtain
0 2 v = 5 231
VRS B i i+ S g i
M ax 20; 8! ¢ (4.24)
k;k
Xs
zi Ki i (4.25)
i=k+1
0 v 1
i 2 P Ns P Ns 2
_ PRS i=k+1 B0t Zier i
Min PZmax; Q1 k + (4.26)

k;k

Originally, the Sphere Decader performs on a lattice without constellation bound restrictions.
Howewer, intro ducing equations4.24,4.25,and 4.26is a straightforward but necessanyrick that
strongly reducesthe complexity, or, in other words, not activating it would strongly increasethe
complexity.

If di erent PAM sizesare usedon ead antenna, for examplefor spectral e ciency tuning or
adaptive modulations, the constellation is rectangular parallelepipedic, the constellation bounds

[Zmin:i ; Zmax:i ] vary for eat dimensioni.

Notice that the algorithm only requiresM !, andthe matrix. This shaws us that a
Cholesky decomposition is more pertinent than QR decomposition (seesubsection4.1.3).

The computed bounds are updated recursively thanks to the equations[85

As
Sk = Sk( K+1 3 -nns ns) =g+ Kii i (4.27)
i=k+1
1 2
Xs Xs
Tk 1 =T 1(k;::t n) =R3 i @+ A (4.28)
i=k j=i+l

=T k(S z)? (4.29)
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and nally , eat time a vector z is found, the distance betweeny and x = zM is
#=RZ T (4.30)

Since we are interested in the point minimizing &, the radius Ré is reducedto d ead time a
point is found. This strongly reducesthe complexity and keepsthe optimality. When no points
are found, the last found point is the ML point.

4.2.2 The Sphere Decoder based on Schnorr-Euc hner point enumeration strat-
egy

The Sphere Decader based on Scnorr-Euchner strategy [70] was rst introduced in digital
communications by Agrell, Eriksson,Vardy and Zeger(AEVZ) in [1]. The key ideais to view the
lattice aslaminated hyperplanesand then start the seard for the closestpoint in the nearest
hyperplane. A radius is specied in order to limit the explored region to a sphere. If no
radius reduction is applied during the seard, all the points belongingto the spherewould be
enumerated, as for the Pohst strategy, which justi es the name of SphereDecader too.

a) Laminat ed hyperplanes struct ure of the lattice
Using the QR decomposition = M Q, we get

y=yQ=2zM Q+ Q=2z + (4.31)

wherey and arethe rotated versionofy and , respectively. The matrix  canbe decomposed
into

2 2
0 3 0 3
ms 11 | z é s 1 : z
= : = 4.32
E 0 0 (4.32)
[ns 1] ‘
Ns Ns NsiNsg

where s ijsanng 1 ng 1 matrix obtained by extracting the rst ns 1 rows and
columnsof = [Msl and L”j 1 cortains the rst ns 1 componerts of the row ..

Any lattice point can be written asthe sum of a ( ["s 1) point and a translation vector
Zng ng:

( [ns])= ( [ns 1])+ 7 (4.33)

S

The lattice is decompsedinto an in nite set of parallel sub-lattices, obtained by translating
an initial lattice by an integer multiple of the vector .. The lattice g‘s U= ( s yis

taken asthe reference,we can usethe notation i[”s U= g‘s Uy ns to desgyibe the parallel

hyperplanesset. The translation vector ,, canbe decompsedinto . = L”: 1];0 and

ne? = [0;:::1;0; ngingl, the collinear and orthogonal componerts to the hyperplane E,”s 1],

respectively. The distancebetweenthe parallel hyperplanesd i[”s 1]; ,[rfi 2 iS] ngnel- Each
lattice i[”s Yhasa triangular generator matrix and can be decomposedinto a set of parallel
lattices with a translation vector L”SS 11], and soon.




86 BICM receiversfor MIMO channels

b) Closest point comput ation

The received point y is located betweentwo hyperplanes U,'fs Y and E,:SS 11] Let us consider

that ' Yis the closesthyperplane. The indice vy, is found by the normalized projection of

Vng

yon ng2: $ t '
y ns;? yns

Vn, = (4.34)

° k ns;? k2 - Ns;Ns
where b:e is the nearestinteger rounding function. Let %= sgn vy, % be the direction

s
of the nearesthyperplane, we can sort the set of hyperplanesby increasingorder of distancesto
y:

(6]
. s 1. s 1], s 1] . s 1] ....
A A (e VR B S (4.35)
[ns 1]

The projection of y on any hyperplane assaiated with  7° = wherez,, = vo, + kK, k2 Z , is
yl"s 1. However, the lattice is translated from the origin with a vector vy, ne:ks IN order to
considera noisy point in a certered lattice, we apply the translation to y["s 1 and obtain the
new noisy point:

Yps u=ylt oz, [ (4.36)
The Euclidean distance betweenthe received point y and the hyperplane assaiated with [Zr,lss 2
is

2
d Dy " =lyn, zn nens) (4.37)

Zng

Fig. 4.9illustrates the laminated hyperplanesstructure and notations.

The hyperplanesare sorted in decreasingorder of likelihood, it seemsnatural to begin a

closestpoint seard in the rst sub-lattice U;SS it is important to insist on the fact that there

is no guarantee that the ML point belongsto the nearest sub-lattice E,”nss 1], we indeed have
no knowledge of the ng 1 other dimensionsat this step of the algorithm. After projecting y

on the nearesthyperplane {,’155 1 (with translation), we repeat the sameprocessingrecursively

by sorting the sub-lattices [ns 2], projecting the new received point, and so on, until the last

Vngs
dimension, where the closestpoint seard over f,ln]s;::;vz;j is made by a simple quantization.
The rst point found by the algorithm is called the Babai point, which is a sub-optimal
detection point, yet more reliable than Zero-Forcing. This can be seenas a decision feedbadk
equalization on the laminated hyperplane structure: oncea decisionis taken on one symbol, a
part of its interference cortribution is subtracted by orthogonal projection. Fig. 4.10 shows a
simple examplewherethe ZF point, Babai point and ML point are all di erent. It can easily be
shawvn that the Babai point always leadsto smaller distancesthan ZF which is obtained after
non-orthogonal projections parallel to the lattice basis. For any received point, the ZF point
always equalsthe Babai point if and only if the lattice is orthogonal, and in this caseZF is
ML. This remark is illustrated in Fig. 4.10via the ZF, Babai and ML decision regions limits.
Moreover, the Babai point depends on the order in which the dimensionsare treated. There
exists an optimal order that minimizes the Euclidean distance, but this dependson the region
y belongsto, and this will be treated later. As an example,in Fig. 4.10-(c), we seethe Babai
point obtained by rst considering dimension 1, but we can notice in Fig. 4.10-(d) that the
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Figure 4.9: Laminated hyperplanesstructure of the lattice.

Babai point obtained by rst consideringdimension 2 is the ML point.

Oncethe Babai point is found, we can reducethe radius seard to the distance d(y; Xg abai).
and continue the enumeration considering the next most likely hyperplane of previous dimen-
sion, and so on recursively until no more point belongsto the sphere.

We now haveto expressthe recursive processingof the sphereboundsand point enumeration.

Let usde ne  anoisy point in the hyperplane of [zlf,]s:o~~--- .. =0- The point | isthe ZF point

of ., obtained by the relation r Xl = |, wherer Kl = ( Ky 1 s ower triangular. The
vector ‘:(k;kj ¢, projects the point  on the hyperplane [ztsiga;:::;zkﬂ -0z, » leading to E‘ U,
We can compute
kik  Zk
dk = kk Zy kk = ——— (4.38)

I kk

The distance kdik? is the componert for the k-th step of the distance betweenthe lattice point

found and the received point y. Then E‘ Yis translated by z« [kk Y to considerthe equivalent
problem in [z:si%;:::;zkm' The new noisy point is
k k
k1= o g M (4.39)
We can compute ¢ 1:
k k k
k1= Kk or K U= [k 4 k;kf[k Uz [k Hp ke 1) (4.40)
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Figure 4.10: Schnorr-Euchner point enumeration, 2-dimensionalexample.

and noticing that [ HUr .k B4 r K U= K U= 10221 0], we have that

k1= g (4.41)

The authors in [1] use equations (4.41) and (4.38) to processthe recursive enumeration while
computing the distance, but we will seein the sequelwhy (4.39) is usefulto make a parallel with
the Pohst strategy. An implementation version is avalaible on Alg .2 and a commerted version
is available on next paragraph.
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Algorithm  2: Schnorr-Euchner strategy + boundaries of the constellation processing.
input . A received point y, the generator matrix M (ns ns) of the lattice, the radius R of the sphere, and the
bounds zmin and zmax of the constellation.
output : The ML point 2 belonging to the constellation and the squared Euclidean distance bestdist betweeny
and 2M
:
2 QR decompositon M = Q where is lower-triangular and QQ' = |
3r 1
4 y=yQ
5
6 bestdist R2,k ns
7 distg 0
8 e yr
9 zx  [exk]izZx  max(zk;Zmin ),z MIN (Zk; Zmax )
10 (exk  Zk)=(r «k)
11 stepg sgn( )

12 [Lav o 1]

13 newdist

disty + 2

14 if newdist < bestdist and k 6 1 then Goto Label 2
15 else Goto Label 3

=
o]

Lab el 2

17 for i=
18 k k
19 distg

ltok 1do e 1; € r i
1
newdist

20 zx  [exkli zx  max(zk;Zmin ), Zk  MiN (Zk; Zmax )
21 = (exk  zk)=(r k)

22 stepy

sgn( )

23 Goto Labell

24 [Labe 3]

25 if newdist < bestdist then

26 2

z

27 bestdist newdist

28 else if k = ng then return 2 and terminate

29 else k

k+1

30 z Zx + stepg

31 if zx < Zmin OF Zx > Zmax then

32 stepg stepx  sgn(stepyk)

33 Zx Zx + stepg

34 if Zxk < Zmin Or Zx > Zmax then Goto Label 3
35 (&kk  Zk)=T Kk

36 stepg stepx  sgn(stepk)

37 Goto Labell

The SE algorit hm for mult iple antenna channels wit h extended explanat ions:

Input.

Output.
Step 1.

Step 2.

A received point y, the generator matrix M (ns ns) of the lattice, the radius R of the sphere, and the
bounds zmin and zmax of the constellation. You can set the radius R to +1 or to an optimized value.
The ML point 2 belonging to the constellation and its squared Euclidean distance bestdist to y.

Pre-pro cessing : Compute the QR decompositon M = Q, where is lower-triangular and QQ' = I.
Compute the inverser = landy= yQt.
Initialization - Dimension ns: Set bestdist R2,k  ng,disty 0 (The algorithm starts with dimension

ns, the cumulativ e distance dist,, betweenthe received point and the hyperplane with dimension ns + 1 (not
existing) is 0). Setex  yr (Vector e contains the ns real coordinates of the received point y in the vector
space with dimension ns). Set zy [exk] (The closest hyperplane with xed coordinate zn, is chosen by
taking the closest integer value of enn,). Set z max (zx; Zmin )» Zk min (zx; Zmax ) (If the hyperplane
doesnot belong to the constellation, the closest hyperplane belonging to the constellation is chosen). Compute

= (exk zk)=(r kk) (This is the coordinate distance between the received point and the chosen hyperplane
of dimension ns 1, 1 1). Set stepg sgn( ) (This is the increment for the next zn, value, to test
the second closest hyperplane, which is located \on the other side" of the received point).
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Step 3.

Step 4.

Step 5.

Distance computation: Compute newdist dist, + 2 (The distance between the current hyperplane
and the received point is computed by the Pythagore algorithm, since projections are orthogonal. The
squared new distance newdist is obtained by summing the squared distance disty between the hyperplane
of dimension k + 1 and the received point and the distance between the projection on the hyperplane of
dimension k + 1 and its projection on the hyperplane of dimension k.
If newdist < bestdist and k 6 1
go to Step 4 (the hyperplane is valid, it may contain points with an asscciated distance smaller than
bestdist and no point has been reached yet (k 6 1)).

else
go to Step 5 (either a valid point has been found (k = 1) or the hyperplane with dimension k is too

far from the received point, i.e., the distance between all the points it contains and the received point is
higher than bestdist).

endif .
Pro cessing of a lower dimension: Compute for i = 1;:5k  1ex 1 ek r xi (The coordinates

of the projected point on the hyperplane of dimension k 1 in the lattice contained in this hyperplane are
computed). Decrement k (We now consider the projection on an hyperplane with one dimension less). Set
dist ¢ newdist (The cumulativ e distance dist x betweenthe received point and the hyperplane with dimension
k + 1 is newdist). Set zx [exk] (The closest hyperplane with xed coordinates zn,;zng 1;:::; Zk iS chosen
by taking zx equal to the closest integer value of egxk). Set zx max (zx; Zmin ), Zk min (zx; Zmax ) (If
the hyperplane does not belong to the constellation, the closest hyperplane belonging to the constellation is
chosen). Compute = (exx 2zk)=(r kk) (This is the coordinate distance betweenthe projected point on the
hyperplane with dimension k and the chosen hyperplane of dimension k 1, 1 1). Setstepx  sgn( )
(This is the increment for the next zx value, to test the second closest hyperplane, which is located \on the
other side" of the point projected on the hyperplane with dimension k). Go to Step 3.

Termination of a branc h:

If newdist < bestdist
set?2  z, bestdist newdist (A valid point has beenfound (k = 1) with an asscciated distance smaller

than bestdist. Thus, the point is stored and bestdist is updated. Since the next closest hyp erplane with
dimension k 1= 0 (point) is obviously located at a higher distance than bestdist, it is not necessaryto
change z1).

else if k= ng
return 2 and terminate  (The closest hyperplane with dimension ns 1 is located at a higher distance
than bestdist, the algorithm is nished).

endif .
Increment k (The closest hyperplane with dimension k 1 for xed values zng;:::; 2z is located at a higher
distance than bestdist or we have found the best value z; (k = 1) for xed values zng;:::;22, ie., it is

not necessary to change zx. The xed value for dimension k + 1, zx,; has to be changed). Compute
Zx zx + stepx (The xed coordinate in dimension k is changed to test the next closest hyperplane).
If zx < Zmin OF Zx > Zmax
set stepg stepx  sgn(stepx) (The next closest hyperplane is outside the constellation, the next
closest hyperplane at the \opp osite side" will betest ). Set zy 7 + stepk (The zx value is updated in
order to test the next closest hyperplane at the \opp osite side" ).
If zx < Zmin OF Zx > Zmax
go to Step 5 (The next closest hyperplane at the opposite side is also outside the constellation. It
is not necessaryto further change zx. The xed value for dimension k+ 1, z,+1; hasto be changed).

_endif .
endif .
Compute (exk zk)=r kk (This is the coordinate distance betweenthe projected point on the hyperplane
with dimension k and the chosenhyperplane of dimension k 1, 1 1). Set stepg stepx  sgn(stepg)

(Step is prepared to test the next closest hyperplane at the \opp osite side" later on).
Go to Step 3.

4.2.3 Strategies dierences and similarities

The two strategiespresenied in 4.2.1and 4.2.2 are often presenied asdi erent and the compar-
ison often tips the scalesin favor of Schnorr-Euchner enumeration strategy. In this subsection,
we will make a comparisonbetweenthesetwo algorithms basedon the tree exploration.

The two Sphere Decaders can be seenas a tree seard using the intrinsic tree structure of
the lattice. If the seart is performed over all the points belonging to the intersection of a

(2"

QAM)" constellation and the lattice, the tree has a depth ng and 2™=2 states by stage.

The chosenmetric is the Euclidean distance betweenthe projected received point and the cho-
sen hyperplane. We can seethe tree of a 4-PAM over a3 3 random lattice in Fig 4.11, the
abscissarepresens the cumulativ e distancesof the enumerated points, the ordinate represens
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Figure 4.11: Lattice tree represenation, cumulativ e distancesthrough exploration of dimensions.

the explored dimension. The squaredistancesof all the constellation points can be read at the
branches end, on the abscissa. The ML point corresponds to the path achieving the smallest
value on the abscissa.

When the noise placesthe received point closeto the median limit betweentwo hyperplanes,
the two corresponding branches are merged. This e ect is emphasizedby strong fading and
interference,and results in the crossingof branches, which slows down the researt process.

The sphereradius correspondsto an abscissalimit for the branches, which is shifted left for
ead new computed point. It cuts somebranchesadaptatively with the found points. We will
later usesud a represenation to justify somecomplexity reductions.

The two preseried SphereDecaders (Pohst and Schnorr-Euchner) iniatially do not seemto
have the samepoint enumeration strategy, neither the sametree. Indeed, Pohst strategy enu-
meratesthe points in Z"s while Schnorr-Euchner strategy usesthe lattice laminated hyperplane
structure for the direct enumeration in . The branchesend of both trees are the samesince
the samelattice points are enumerated. Let us comparethe two tree constructions in order to
seethe di erences betweenthe two strategies.

Pohst | Schnorr-Euchner
Tree depth Ns

States at stagek The set of coordinates fzn;:::; zg

Number of outgoing branchesby states 2m=2
2
Branch Metric k(S zi)? kr*k_kz"
The branch metric of Pohst strategy is equal to
n # n #

, Xs 2 Xs 2

kk(Sk - Zk)°= kk 'kt kili z) zZ = Yk ik Zi (4.42)
i=k+1 i=k

Furthermore, the branch metric of Scnorr-Euchner strategy can be modi ed using (4.38),
(4.39) and |, =y, we have that

S

n #2
Z 2 Xs

ok = (kk Zx kk)2= Yk ik Zi (4.43)

I kk
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We can conclude that both algorithms compute the ML point by browsing the sametree.
The di erence betweenthe two algorithms sumsup in the order the 2™=2? branchesare selected
from a given state, and the equationsusedfor computing the metrics.

Oncethe tree structure is de ned, we can usea global tree decaling method sud as branch-
and-bound algorithm. This hasbeenproposedfor examplein [57] with the memorization of the
whole tree structure, which is not necessary This tree browsing technique is strictly equivalent
to the Schnorr-Euchner decading, and is optimal when consideringthe total number of selected
branches. Indeed, the sub trees are scannedby decreasingorder of likelihood. We can seethe
Sdinorr-Euchner algorithm as a branch-and-bound algorithm on the intrinsic tree structure of
the lattice.

Initially , the Pohst method was designedto enumerate the lattice points belonging to a
sphere. Any enumeration strategy would lead to the samelist. When the algorithm was applied
in [85], the radius reduction has been added but the erumeration strategy kept unchanged.
Clearly, an ordering of branchesin ead dimension would acceleratethe decaling, the optimal
choiceis the sorting by decreasingorder of likelihood. In the dimensionk, the integercomponerts
to enumerate belongto the interval

2y p B p 7
g t' RS I R IR P R§ T N TR é
kik ' kik
(4.44)

The Sphere Decader in [85 enumerates the points of this dimension from the lower to the
upper bound, but an optimal enumeration would begin from the certer (most likely value) and
alternate around this value as for the hyperplanesselectionin Schnorr-Euchner. With this new
enumeration, the two Sphere Decaders perform exactly the same seard in the tree and they
only dier on the recursive equations complexity.

We will now compare the complexity assaiated with ead branch and to the pre-processing
computations.

Pohst enumer ation complexit y analysis
The pre-processingfor Pohst enumeration strategy has complexity equal to n2(5ns  1)=2, in-
cluding:

1. the channel matrix M inversion: 2n3=3+ n2=2 ns=6 ops

2. the Gram G matrix calculation (using the symmetry): ng(ns+ 1)(2ns 1)=2= n3+ n3=2
Ns=2 ops

3. the and matrices computation via Cholesky decomposition: 5n3=6 3n2=2+ 2n=3

The initialization for Pohst enumeration strategy includesthe ZF point computation which re-
quires 2n2 ops.
The computation of a tree branch metric in the dimensionk requires2(ns k) + 10 ops.

Schnorr-Euchner  complexit y analysis
The pre-processingfor Schnorr-Euchner enumeration strategy requires 7n3=3+ 3n2=2 + 31n;=6
ops:
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1. the and matrices computation via QR decomposition: 5n3=3 + 2nZ + 16ns=3
2. the channel matrix  inversion (triangular): 2n3=3 n2=2 ns=6 ops

The initialization for Schnorr-Euchner enumeration strategy requires2n2  2ns+ 3 ops.
The computation of a tree branch metric in the dimensionk requires3k 1 ops.

Complexit y comparison
First, we can notice that the complexity of the initialization phaseof the Pohst and Scnorr-
Euchner strategiesare quite equivalert.

The branch complexity varies with ng  k for the modi ed Pohst strategy, and with k for

Scnorr-Euchner. However, the algorithm computesmore branchesin the dimensionwith lower
indices, which justi es why Schnorr-Euchner is often lesscomplexthan Pohst strategies, applied
to spheredecaing.
The optimal choicewould be to compute the Pohst recursive equationsfor the higher dimension
indices k > ng=2 and the Sdcnorr-Euchner recursive equations for the lower dimension indices
k  ng=2. Howewer, the Schnorr-Euchner initializations, necessaryat ead new shift between
the two strategies, are as complex as the complexity reduction given by the use of the Pohst
recursive equationsfor the higher dimensionindicesk > ng=2.

In the end, the Schnorr-Euchner strategy seemso be a judicious choicefor decaling a lattice
constellation. Basedon this conclusion,we will now always considerthis strategy for ML sphere
decding until the end of the thesis report. The algorithm will be called for simplicity SD-SE
(Sphere Decader with Schnorr-Euchner strategy).

In Fig. 4.12, we can obsene the Point Error Rate, i.e., the probability that the ng-
dimensionnal decaled point is not the transmitted point for QPSK and 16-QAM transmissions
over MIMO channels. Even with 16 antennas, i.e. 32 real dimensions,the acceleratedSphere
Decader nds the ML point with a reasonablecomplexity.

4.2.4 Complexit y reductions

The complexity of the SphereDecader dependson many parameters. As a non-exhaustive list,
we cite:
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the spherepoint enumeration strategy (Pohst or Schnorr-Euchner)

the choice of the sphereradius, and possibly its reduction through iterations

the constellation bounds processing

the lattice basismodi cation via reduction

the dimensionsexploration order, where the objective is to separateas much as possible
tree branches

a) Init ial Sphere radius choice

The optimal radius choice would be RZ = ky  xuk? sinceonly the ML point would belong
to the sphere. However, such a choiceis impossiblewithout any pre-computation. We can rst
noticethat y Xxy_ =X XmL+ Which leadsto someconclusions:

If Xx = xm L, which is about achieved only when the signal-to-noiseratio is high (low error
rate), we have that jy xuk? = k k? only dependson the ns-dimensional real Gaussian
noise norm, which is a random variable with chi-square distribution:

1 . -
p (r > 0) = _ rns—2 1e r=2No (445)
(2Ng)"s=2( 1)

The probability that the noise norm is greater than R% is equalto
Z 2 neg2 1

2 RS R2=2N

F(R3) = . p(X)dx=1 e "s™0

k
1R

Kl 2Ng (4.46)

k=0
which givesthe probability Pr2 (x 2 S) that the transmitted point x doesnot belongto the
seard sphere. We can inversethis function to nd the sphereradius that leadsto a given
pRg(x Z S). As an example,we could choosea setof radii Rs:1 < Rs:2 < Rs:3 < Rs:4 sudh
that pg; (x 2S) = 0:1, pgz (x 2 S) = 0:01, prz (x 2 S) = 10 4 Prz, (X 2S) = 10 S,
If no point is found with the rst radius, the processingis repeatedwith the secondradius,
and soon until one point is found. It is very dicult to nd the optimal choice of prob-
ability set that minimizes the average complexity becausethe complexity of xed radius
decdding is not known.

If the received point belongsto the constellation volume, i.e., if the Zero-Forcing point
belongsto [0;zmax]™s, the maximal distance to a constellation point is dgmin =2. The
seart radius may e limited to this value. This is particularly useful at reasonablesignal-
to-noiseratio, whenthe point belongsto the constellation and the radius given by the noise
statistics is too large. Indeed, the lower the signal-to-noiseratio, the lower the probability
to be within the constellation limits. We can compute the lattice minimal distance dg min
using a SphereDecader on the lattice, with the received point at the origin. Unfortunately,
this is ascomplexasthe spheredecaing itself. If the channelis quasi-static or block fading
with few blocks, it could be economicalto processsuc a computation for ead new channel
block. If the channel is ergadic, we can use someupper bounds on the lattice minimum
Euclidean distance, for examplethe minimum Gram matrix diagonal elemer assuggested
in section4.1.2.

Noticing that 8x 2 'ky  xmLk? < ky xk?, we can choose a radius performing a
simple detection # such as ZF, MMSE or DFE, and compute the radius RZ, = ky ~ Rk?.
This last technique has the great advantage to take into accourt the instantaneous noise
amplitude and received point position, whereasthe other techniques do not make bene t
from any knowledgeof y.
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Finally, we can take advantage of ead technique to nd the best radius that limits the com-
plexity.

In Fig. 4.14, we can obsene the complexity of SD-SE with an in nite initial radius over a
4 4 MIMO channel and di erent modulation sizes. The complexity decreasesxponertially
with the noise level. For high signal-to-noiseratios, the complexity corvergesto a constart
value given by the complexity to decade one point. The complexity increaseswith the spectral
e ciency increases.
In Fig. 4.15,Fig. 4.16 and Fig. 4.17, we can obsene the complexity ratio betweenan SD-SE
with a radius pre-computation and an SD-SE with an in nite initial radius. We can notice that
for the practical signal-to-noiserange,a complexity reduction is achieved using the well-designed
initial radius taking into accourt the noisevariance and the minimum distance evaluation when
the point is inside the constellation. This reduction factor increaseswith the number of dimen-
sionsand spectral e ciency .
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Figure 4.18: Babai wrong decisionregion without (left) and with (right) lattice reduction.

As a conclusion, we can notice that the complexity attenuation is never huge. Taking into
accourt the constellation boundariesin the seard algorithm provides a substartial complexity
reductions.

b) Lattice basis modic ations

We will presen two lattice basis modi cations that can lead to complexity reduction: lattice
reduction and basis vector re-ordering. As presened in section 4.1.4, lattice reductions can be
usedto changethe random channel basisinto a more orthogonal and shorter one. We already
have seenthat if the lattice basisis orthogonal, the ZF , Babai and ML points are the same. We
can deducethat the more orthogonal the basisis, the simpler the decading is. In this case,eath
decisionin the tree is more reliable and this involvesthat lattice basisreduction reducessphere
decdaing complexity. Studies supported by computer simulations showved that Schnorr-Euchner
Decader is two to four times faster than Pohst SphereDecader in nding the nearestpoint in a
completely random lattice perturbed by uniformly distributed noise[1]. The factor 4 in speed
ratio is measuredafter applying basis reduction like LLL (Lenstra-Lenstra-Lovasz[54]) or KZ
(Korkine-Zolotare [5Q]).

In Fig. 4.18,we obsene the Voronoi regionsand the Babai decisionregionswith and without
reduction. When the received point belongsto one of the two crosshatched regions, the Babai
point is not ML. The two regions I' and 2! are given by the dimensiondecaling order. Notice
that without any reduction, the order leading to region 2! will provide faster decading since
the Babai point is more reliable. With a reduction, we rst notice that the regions T' and

2" are disjoint, which indicates that for ead received point, the lattice reduction assaiated
with a point-speci ¢ dimension ordering enablesthe Babai point to always be ML. Howewer,
this optimal ordering considerationis at least as complex asthe ML decaling itself. Neverthe-

less,it shaws that the reduction always enhanceghe Babai decaling and accelerateghe Sphere
Decader.
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In Fig. 4.19,we obsenethe complexity gain obtained by an LLL reduction whendecading an
ny n{ MIMO channelequivalent lattice with a Schnorr-Euchner SphereDecader. At high signal-
to-noiseratio, the Babai point is often the ML point and the reduction is lessuseful. However,
at low signal-to-noiseratio, we can obsere the gain factors obtained thanks to reduction and
increasingwith the number of dimensions.

However, such a complexity reduction is di cult to obtain for QAM modulations on MIMO
channels,and that for di erent reasons:

If the channelis ergadic, the reduction hasto be computed at eady new channelrealization,
in this casethe complexity gain might be inferior to the complexity of the reduction. The
rst conclusionis that lattice reductions have to be usedfor block fading MIMO channels,
and computed only at ead new channel realization.

The bounds of the constellation cannot be computed anymore, indeed, the channel re-
duction transforms the cubic constellation into a parallelepipedic constellation where eath
bound dependson all the dimensionsat the sametime. The complexity reduction given
by the restriction to the cubic constellation bound is higher than the one given by the
reduction, this can be seenin Fig. 4.20.

The constellation boundaries can be computed after a reduction if and only if the basischange
matrix V is triangular, whereM; = VM isthe reducedbasisfrom M . Indeed, the transmitted
point x 2 is assaiated with z 2 Z"s and z°2 Z"s consideringthe generator matrices M
or M9 equivalertly. Using the relation z = z% between z and z°% we can seethat if V is
lower triangular, the decisionson z can be computed, dimension by dimension and recursively.
Unfortunately, somesimulation results have shonn that the complexity reduction obtained with
the bad reduction is inferior to the recursive bounds processingcomplexity addition.
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4.3 Soft-output list decoding of a lattice constella tion

Usually, to compute the soft-output of the mn; coded bits transmitted on ead time period , an
exhaustive marginalization which takesinto accourt all the 2™t possibletransmitted symbols
hasto be processed.However, for complexity issuesin the caseof high spectral e ciency, this
marginalization is limited to somewell chosenpoints in a sphericallist. However, the list hasto
be well chosento keepnear-optimal performancewhile strongly reducing the complexity of the
APP detector.

4.3.1 Limitation of the lik eliho od in exhausive APP detector

For systemswhose equivalent lattice dimension is too important, the exhaustive marginaliza-
tion becomestoo complex. For the example of 16-QAM modulations, a2 2 MIMO channel
requires a marginalization of 26 points by channel use,and an 8 8 MIMO channel requires
a marginalization of 264 points by channel use. We proposeto limit the marginalization to the
points belongingto a list L. The approximated soft value becomes

n ! #
P ke 2% K Q
22 (g=n\L €& 2 rsj (Cr)
(g) = 5 RTINS (4.47)
z2 \L e 2 réj (Cf)

We obsene that the soft outputs depend on both the geometricalcon guration when considering
the likelihoods and the a priori probability con guration given by a decaler. In the caseof an
exhaustive list (L contains the 2™t points), someof the likelihoods in the expression(4.47) are
negligible. Let us supposethat all the points whoselikelihood is not negligible belongto a list
L:

1 ky z% K2 1 ky zm K2

e 27 e 27 (4.48)

0 . .
8z°2L; 8z2L; > 5 2

The geometrical limit that separatestheselikelihoods is a spherecertered on the received point
that justi es the construction of a non-exhaustiwe list with the points of a sphere. The choice of
the sphereradius determinesthe performanceand the complexity of the corresponding soft-input
soft-output detector and is the main di cult y of the solution presered by the authors. Indeed,
the random nature of the channelsimplies a non-stability in the list size. Another dicult y
appearsin the caseof bursted channels,the list directly dependson the received point y, which
requires the reconstruction of the list for eady new received point, i.e., at ead symbol time.
Indeed, even if the channel is constart, the noisevaries continuously and so doesy.

4.3.2 A shifted spherical list

In the caseof an ergadic channel, oncethe ML point is found, we chooseto certer the list on
the ML point instead of certering it on the received point. Clearly, the marginalization (4.47)
doesnot give the sameresults since the points in the list are di erent. We make the approxi-
mation that the output of the marginalization is quasi-equalto the output when the sphereis
certered on the received point. Indeed, to compute e cien t soft values, the radius of the sphere
must be relatively high, and the points that will di er in the list are closeto the surfaceof the
sphere, so they have the smallest likelihoods. In Fig. 4.21, we clearly seethe advantages of
the ML certer when comparedto the received point certer. Indeed, when the received point is




4.3 Soft-output list decaing of a lattice constellation 99

e ° //
° e o
° ° °
° ° ° °

Figure 4.21: Comparison betweenthe spherecertered on the ML point and the spherecentered
on the received point y.

outside the constellation, which has a high probability when considering a large number of di-
mensions,the spherecertered on the received point enumeratesa large number of lattice points
to nd a small number of constellation points. When the sphereis certered on the ML point,
the number of listed points is reducedand the high likelihood points are takeninto consideration.

Sincea classicalSD nds the closestpoint to a noisy received point in a lattice, somechanges
have to be made to the SD algorithm to extend it to a soft-output spheredetector: the radius
of the sphereis not reducedduring the seard like preseried before, every point found in the in-
tersection of the sphereand the constellation is stored, together with its distanceto the received
point. A double Pohst recursion is usedto enumerate the points. Indeed, the rst classical
recursion is neededto chedk all lattice points at a squareddistance lessthan the radius of the
sphere centered on the ML point. We added a parallel secondrecursion to compute the dis-
tances betweenthe enumerated points and the received point y (seestep 1 and variables with
an upperscript d in the description of the algorithm 2) with a reduced complexity.

Instead of certering the sphereon the ML point, we evaluate it with classicalsub-optimal
methods to reducethe complexity of the system. As a non-exhaustive list, we cite someknown
methods that can be implemented as an alternativ e to the SphereDecader:

zero Forcing (ZF) with or without a hard decision

minimum Mean Square Equalizer (MMSE) with or without a hard decision
interference Cancelation with or without ordering (MMSE or ZF)

babai point in the constellation

Until the end of this documert, we will only discussthe casewhen the sphereis certered on the
ML point, the above simpli cations can be applied in most cases.

4.3.3 Choice of the radius

The choice of the sphereradius R for this list SphereDecader is asimportant asthe choice of
the radius for the corvertional SD. Having too many points in the sphereheavily slowvs down
the detection while not having enough points degradessigni cantly the performance. In this
section, someproperties of lattices are exploited to determine a sphereradius that guararteesa
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Algorithm  3: Sphericallist enumeration.

input . A received point y, a point of the lattice x, the generator matrix M (ns ns) of the lattice, the radius
r of the sphere, and the bounds znyi, and zmax of the constellation.
output : A list L of points of the lattices that belong to the sphere, a list of the distance betweeny and each

point of the list.
Pre-pro cessing
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XM 1 yM|
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stability in the number of points in the list. Let usassumewewant to nd Ny points to createa
list certered on the origin. We make the approximation that the volume of a spherecortaining
N, points is equal to the volume of N, fundamenrtal parallelotopes. Hence, the radius R of a
spherethat cortains N, points is well approximated by

N, vol() =

R = 4.49
v (4.49)
wherevol () is the fundamenal volume of the lattice and V, is the volume of a unitary sphere
in dimensionn: ( L,
n=2 — n pair
V. = - o o=t (4.50)
"7 (n=2+1) 2 (0 D rzlf(” D=2 1 impair

This method of choosing the radius is quite stable in a lattice when N, is high. We can seethe
averagenumber of points obtained in a lattice with this method in Fig. 4.22-(a). The average
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Figure 4.23: Mean and Deviation of the number of points in the list for a MIMO constellation.
The list sphereradius is derived from the fundamental volume.

number of listed points is equalto the expected number of points N, for any value of n;. In Fig.
4.22-(b), we can seethe deviation over the mean of the number of listed points, and we notice
that for high valuesof Ny, the list becomesmore and more stable, as expected.

When considering a constellation, the intersection between the sphere and the constellation
signi cantly disminishesthe number of selectedpoints. Depending on the position of the ML
point in the constellation, the number of enumerated points varies. Fig. 4.24 shaws a situation
where 13 points are enumerated in the lattice and only 7 points in the constellation. In Fig.
4.23-(a)(b), we can seethe meanand deviation of the number of listed points in the intersection
of the spherical list and a 16-QAM modulation. First, we can notice that the averagenumber
of points is signi cantly lower than the expected number of points, and this depends on the
number of transmit antennas. Indeed, the number of listed points saturatesto 2™,

In order to have more stability in the number of listed points and to avoid small and large
lists, we can adjust the sphereradius taking into accourt the number of hyperplanesnpy, the
ML point belongsto. The number of expected points N, is multiplied by [npyp], an expansion
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Figure 4.24: The lossof points in the list in the caseof constellations.

: : : : : 7
70 = 0 N,=1000 ~ +
N,=2000 X Ny=2000 X
60 L pr3000 ¥ il 60 NPTBOOO X
Np=4000 [ N3=4000 0
@ N,=5000 m @ n - u u ® | Nge5000 _ m
£ som - £ som L
5 L] 5 e o) = = . = o
5 40 0 o u - 5 40 m i}
-E O o u . 'E X X * * X * ¥
2 30%f * o 0 n 2 3% *
P * % o] )
8 * % 0 S X x X X X X x
¢ 20F X X % * % 3 201
< X X
X
+ X + + + + + + + +
L + L
10 + ¥ + . N . 10
0 ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
nhyp nhyp
(a) No expansionfactor (b) Expansion factor [i]

Figure 4.25: Averagenumber of listed points with or without the expansionfactor [i].

factor of the list sizewhich dependson nyyp. Indeed, the more the number of hyperplanesthe ML
point belongsto, the lesswe have points in the list. For example,the choice [i]= 1+ n'—s gives
good results. We can seerespectively in Fig. 4.25-(a) and Fig. 4.25-(b) the averagenumber of
points in the list, with and without the expansionfactor [i]. We canobsenethat the expansion
factor succeedsn correcting the averagenumber of points for any parameter npy,. The aver-

agenumber of points is lower than Ny, this hasto be takeninto considerationwhen ny, is chosen.

We will now try to reducethe number of points deviation, using the obsenation that the
number of listed points is also in uenced by the lattice geometry The more densethe lattice
is, the more stable the list becomes,and we have lessside e ects. To take into accourt this
property, we can use the fundamental volume () and add a pre-correction of the expected
number of points to the list radius. The problem of nding d2,,, is NP complex, that is why
we approximate it by the minimum of the diagonal of the Gram matrix. We will call g2, ()
this quantity and ¢ the approximation of the fundamental gain of :

— gr%ﬂn ()
jdet(M )j*="s (5

We then use a simple criterion for an additional expansion of the number of points:

f2y 1
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Figure 4.26: Translation invariance of the lattice.

E.g., wetake 1= 3dB; »,=6dB; 1= 4; ,= 16. Finally, the new radius is given by

1
[Ny p] N, det(G) n
Vh

R =

(4.53)

If the number of points in the list is too small, we can reerumerate the points in a larger sphere,
for example by multiplying the radius by 1.5.

4.3.4 Complexit y reduction for block fading channels

Let us de ne Ny the number of symbols in a code word. In the caseof an ergadic channel,
we have to store Npock lists to compute the obsenations on all coded bits before giving them to
the obsenation input of the SISO decader. In the caseof a block fading channel, the channel
remains unchanged during the block. Thanks to the lattice structure, we can nd the points
in the spherecertered on the origin of the lattice and translate them to nd the points in the
spherecertered on Xy . This invokesthe translation invariance of the lattice (cf Fig. 4.26).

In the list, we store n_ points belonging to the constellation with their labeling. For eadh
channel use,the noisechanges,sothe distancesto the received point have to be reprocessed.A
lessperformant version only takesinto accourt the distance to the ML point, sothe distances
are processedonceat the beginning of eat block. We can also enumerate a larger list and sort
it with the distance to the origin. This can be seenas a list of concertric spheres. If the rst
sphereleadsto a list which is too small, we considerthe secondsphereand soon (seeFig. 4.27).

4.3.5 Applications to iterativ e detection and decoding of BI CM

In this section, we illustrate the application of the new soft detector to BICM on MIMO. The
symbols z; belongto an M-QAM constellation. The binary information elemens are encaded
using a rate R¢ convolutional code. The coded bits fc-g are randomly interleaved and fed to a
QAM mapper (M = 2™M) that generatesz. The spectral e ciency of the systemisR, m n;
bits per channel use,or equivalently R m n¢ bits/sec/Hz.

When there is only one symbol represening onebit in the list, the obsenation is either 1 or
0. In that case,there is no point in the constellation with the other symbol, which can cause
computation inconsistency when marginalizing. For example, in Fig. 4.28, if we considerthat
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Figure 4.28: Situation leading to inconsistency

the a priori of the rst bit is equal to 0:0, the SISO decaler fails becausethere is no point
corresponding to a rst bit equal to 0 in the list. Without loss of generality, we will consider
this caseuntil the end of this section.

A rst solution to solve the inconsistencyproblem is to replacethe APP of the considered
bit by the minimum among the cortributions in the list, (4.47) becomes

2 ! '3,
_ ke 2% K Q
mingy (g=py € 22 g (Cr)
G)=gl* 5 b ™M K& Q (4.5
2 (g=p\L € 27 e (Cr)

Another solution is to considerthe worst casewhen the nearestpoint that doesnot belongto
the list lies on the surfaceof the sphere. We considerthe sphereradius to computeits likelihood.
The corresponding a priori probability  of this virtual point canbe chosenusingdi erent ways:

By an averagecasewhen all a priori probabilities are equal to 0:5:
y = 0:5mne 1 (4.55)

By the worst casewhen the point is of higher a priori probability:
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Y
v= maxf (¢);1  (cr)g (4.56)
réj
With this method, (4.47) becomes
2 1
R2
_ vie 22
2%2 (g=1)\L © 2 e (Cr)

Another e cien t way to reduce insconsistencycomputation problems is to apply a ceiling on
the soft values exchanged betweenthe blocks. A rst ceil with parameter . is applied to soft
valuesgiven by the soft decaer to the detector, i.e., a priori probabilities for the detector:

- (G)< ¢) (g) c
8 @)>1 o) (G 1 . (4.58)

The same method can be applied at the output of the detector with parameter |, but it is
preferableto apply the ceiling during the computation of the a priori probabilities product.

Initialization ; 1 |
forr=0tom niandr&j, | i (¢r), ;. maxf j; 0
Indeed, we can seethat the perfectcasewhen ; = 1is solvedby initializing j to1 . During

the computation, if the current product becomesinferior to |, a ceiling is done, which limits
the calculation distortion.

At the end of the computation, ; givesan estimate of the product of the a priori probabili-
ties in the computation (4.57). The parameters | and . canbechosenequalto 10 ° for example.

4.4 Soft-input soft-output MMSE

In the previous section, we have preserted an a posteriori probability detector for multiple
antenna channels. It has the high advantage of providing good performance but has an NP
complexity. We will now presen a sub-optimal soft-input soft-ouput detector basedon the min-
imum mean squareerror (MMSE) criterion. Sud a SISO-MMSE equalizer has beenpreseried
in [28] in the caseof single antenna dispersive channel. We describe the direct application to
MIMO channelsand presen supplemernary complexity reductions.

4.4.1 SISO-MMSE pro cessing

Let us assumethat a mono-dimensionalcomplex mapping ! is usedto independertly corvert
m bits into a constellation symbol on ead transmit antenna. This independenceallows to see
the ny n, channelasn, interfering 1 n, channels. If the feedba& from the SISO decder is
su cien tly reliable, we can assumethat the interferenceis perfectly removed and the extrinsic
probability of a coded bit computed by an exhaustive marginalization over 1. We clearly see
the complexity reduction at a cost of performancedegradationfor low signal-to-noiseratios. The
basic SISO-MMSE is fully presened in Appendix B. However, we will recall the main equations




106 BICM receiwersfor MIMO channels

for the soft output processing.

Assumethat the constellation haszeromean,i.e, E;, 1(z) = 0. The constellation variance
is equal to the symbol energyEs = E, 1(z%). Note g = [0;:::;0;1,0;:::;0] the null vector
with a 1 in position i. The SISO-MMSE is computed from the following steps

1. 80 i< n¢, computethe vectorsz = [zg;:::;zn, 1Jand 2= 2q:11; 2. 4
miym 1
(z) = () (4.59)
Xj=m:i
7z = z (z) (4.60)
2 )%i ._ .2 L_ .2
Zi = jzijc (zi) jzj (4.61)

Zj

2. 80 i< n¢, compute

= diag Zoiiii 4 UEs Ziwaiil Zm 1 (4.62)

# = Esly (z @zi)H][H iH+ Nol] '(aH) (4.63)

i = Es(@H)[H iH+ Nol] *(aH) (4.64)
o iz izmi2 ,

p(zjzi) = exp W = i@a i)Es ) (4.65)

3.80 i< ng,80 j< mcompute

P . Q
22 (G =1) p(ZTJZ(i‘) isj (C)
I 72 p(%jz) Y|§j (c)

(G+im) = (4.66)

4.4.2 Complexit y reductions of matrix inversions

Without any complexity reduction, the SISO MMSE requires the computation of n; matrix
inversions(sizen, n;) for ead iteration and time period. We will rst shov how to compute
only one matrix inversion per iteration and time period and present someideasto limit the
number of matrix inversionsin the whole iterativ e process.

a) Applic ation of the Sherman-Morrison  Formula

To compute ;80 i < n¢, the SISO-MMSE requires the computation of the n, n, matrix
inversion:
Al=[H H+Ng]? (4.67)

where
i=diag 2ottt 2 1Es Zivasiin Zo 1 (4.68)

varies at ead iteration (the §;i variables are computed from the a priori probabilities given by
the error correcting code SISO decader) and for ead antenna.

Notice that
1

Al=H +(Es  Z2))E H+ Nol (4.69)
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h i
where = diag 3;1- and E; is a matrix having only one non-zerocoe cient equal to 1 and
coordinates (i; i).
With the property E; Ei = E;, we deducethat

H EiH = (EiH) EiH = hi hi (4.70)

whereh; isthe i-th row of H. If wedene B =[H H + Ngl], we get

Al= B+(Es 2Z)hh * (4.71)
by applying the Sherman-Morrisonformula, and using the Hermitian symmetry v = B h, =
(hiB 1) , we obtain
(ES g;i)

Al=p1
1+ (Es  Z)hyv

VvV (4.72)

As a conclusion, and at ead iteration, we only have to compute the n, n, matrix inversion
B 1, and for ead antenna, we have to compute one\ matrix by vector" multiplication and two
\ vector by vector" multiplications. Finally, we have

_Esly (z @zi)H][H H+Nol] *h

al
1+ (Es 2 Es+ No(HH );'

(4.73)

b) Mat rix series expansion applied to the matrix inversion
The n, n, matrix inversionB ! hasto be done at each new iteration. We will usein some
adapted situations a seriesexpansion of this matrix to evaluate the inversion. At the n-th
iteration, we have to compute

B lI=[H H+Ngl]" (4.74)

Dir ect method, series expansion on
After someiterations, is supposedto be quasinull in the caseof converging high SN R systems.
We will usethis property of to evaluate the inversionB 1. We have

1
Bl=_21 +I1]1 (4.75)

No
with = NAOH H. We can compute B ! thanks to the power seriesexpansionunder some
convergenceconditions. Let us de ne the spectral radius r() = max;j ij the maximum of

the modulus of the eigervalues ; of . The corvergencecondition of the seriesexpansionis
r() < 1. The computation of the eigervaluesis too complex, sowe will usea straightforward
application of the Gershgorin Theorem that givesa looseupper bound onr ():

0 1

X
r() < miax@ i A (4.76)
j

If the corvergencecriteria is veri ed, the seriesexpansionis given by
0 1
X 1 R .
max@ j jjA<1) B = ()] (4.77)
i . 0.
J i=0
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In conclusion,we can limit the order of the seriesexpansionto L, which leadsto
0 1 ‘
1 X 1 '
— —H H (4.78)
No -

1 X
_— i, A 1.
miax@N0 jj (HH); A<1) B NG

j 0
The seriesexpansioncan be expressediy the lesscomplexity consumingrecurrent relation

1 IiHHIiHH(I ) H M

1' -
B NoH No No

(4.79)
Hence,HH canbe pre-computedead time the channel changes,and is diagonal, which sim-
plies the processingof HH . The number of matrix multiplications, which are predominant
in terms of complexity, is L + 2, this method is usefulif L + 2 < 2n,

Series expansion on the dier ence p+1 n

Even at low SN R, the system corvergesto a state when the dierence 41 = 41 n is

quasi null. We can apply the power seriesexpansionin this case,indeed at the n-th iteration,

we have an estimation of B, 1. We want to ewvaluate B, }; from the new feedbak correction
n+1 . We can write

Mp+1 = HB L H = Mol + paaMa] ! (4.80)
We can directly apply the results seenabove:
0 1
X - .
miax@ n+1;j IMnj JA <1) Mpa " Mp(l n+1 Mn (I natMn (I ::2)) (4.81)

i
This recurrent evaluation of B 1 can be computed by thesedi erent points

lteration 0: compute or evaluate B, * and Mo = HB, 'H
Iteration n + 1: if the corvergencecondition is satis ed, compute p+1 M, and M4
thanks to Eq. (4.81), and compute B, = H Mp.H

4.4.3 Application to Space-Time precoders

In order to improve the diversity order of the system, we introduce a new class of precaders
basedon a modi cation of cyclotomic rotations. The precoder spreadsthe symbolsin spaceand
time with a factor s thanks to a s:ny s:n, matrix S. The new extendeds:n; s:n, channel
matrix H is block diagonal, ead block on the diagonalisan; n, matrix H; corresponding to
the MIMO channel matrix during symbol period t.

Our precoder is a rotation, soSS =1 andS S= 1. At the rst iteration, all the variances g;i
are equal, this inducesthat = ZZ;OI Without any considerationson S, we should compute the

inversionof B 1= [H S SH + Ngl] L which is s:ny  s:n. SinceS S =1, we have

B 1

[H + Nolgn, ] *
- i A T ) 19 (4.82)
dlag 2’0H1H1+ Nolnr gy Z;OHSHS+ Nolnr

We compute s inversionsof (n; n,;) matrices for s symbol periods (as if there was no precader)
instead of 1 inversionof (n¢:s n;:s) matrix. Then at high signal-to-noiseratio we can compute
the matrices seriesexpansionsmethods.
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4.5 Performa nce and complexit y comparison

In this section, we will comparethe performanceand complexity of the three iterativ e receivers
preseried in the previous sections. We considera 4 4 ergadic MIMO channel with 16-QAM
input. The objective of the near APP detector designis to achieve performance not far from
the capacity limit.

Let us considera rate 1=2 parallel turb o-cade [8] whose constituent codes are two (1;5=7)
recursive systematic corvolutional codes. The rate 1/2 constituents are punctured in order to in-
creasethe concatenationrate from 1/3 to 1/2. Figure 4.29shaws the achievable information rate
for 4 4 multiple antenna channelwith 16-QAM input alphabet. The mutual information value
of 8.0 bits per channel useyields a minimum achievable signal-to-noiseratio equalto 4.0dB. The
capacity limit with a Gaussianinput at 8.0 bits per channel useis 3.7 dB. Figure 4.29illustrates
an application of the soft output SphereDecader to the evaluation of MIMO channelinformation
rate under the constraint of a nite QAM constellation input. Two scenariosare preseried: 1-
A target list sizeN, = 1000. The e ectiv e list sizewas distributed betweenN¢(min) = 256 and
Ne(max) = 2300with an averageequalto 1000. 2- A target list sizeNp = 60000. The e ective
list sizewas distributed betweenN¢(min) = 4000and N¢(max) = 26000with an averageequal
to 10000. It is clearthat mutual information evaluation is usefulat high coding rates (R, 1=2)
where its value divergesfrom the Gaussianinput capacity. A reducedsizelist is su cient in
this region.

In Fig. 4.30, we obsene the turb o-cade performance over the 4 4 MIMO channel. We
compare a shifted list spheredecaler and a list spheredecader certered on y both performing
at 1.3 dB from the mutual information limit. The complexity ratio is 3.7 in favor of the shifted
list spheredecader. In this case,the e ective number of listed points histograms are preseried
in Fig. 4.31. We can seethat the shifted list sphere decader succeedsin limiting the small
and large lists whereasthe list spheredecader certered on y often generatesvery small list and
with a non-null probability large lists. When the list spheredecader certered ony hasthe same
complexity asthe shifted list spheredecaler, a lossof 0:5 dB gain is experienced.

In Fig. 4.32,we can obsene the behavior of the shifted list spheredecader with the number
of expected points N, and the interleaver size. First, we obsene that the higher the interleaver
size,the steeper the waterfall region. Then we obsenethat arround 1 dB gain is obsene between
Np = 400 and N, = 2500and only 0:1 dB gain more is obtained choosing N, = 30000which
induces that the APP detector is near-optimum. The system performs at 1:2 dB from the
mutual information limit,whic h is the best performanceknown for 16-QAM overa 4 4 MIMO
channel. Moreover, we show that the SISO-MMSE performs at 1:25 dB from the best List APP
detection. However, the complexity is not comparable betweenthe two detectors. In Fig. 4.33,
we can seethe performanceof the SISO-MMSE detector over a quasi-static MIMO channel and
obsene that it is far from being optimal. The more the number of channel states, the more the
SISO-MMSE will be optimal.

Conclusions

In this section,we have fully describedthe lattice model of the MIMO channeland the maximum
likelihood sphere decader. We have shawvn that the Scnorr-Euchner strategy is optimal for
a given lattice constellation. Then we introduced a new soft-input soft-output detector for
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Figure 4.29: Achievable rate on a4 4 ergadic MIMO with 16-QAM input, N, = 1000-60000,
Ne(min) = 256=4000.

MIMO channels. A sphericallist is constructed arround the ML point processedvith the sphere
decder, and a marginalization is computed over the list points. The sphereradius is computed
to enumerate a target number of points Nj. Sudh a list construction limits the number of small
and large list, which stabilizes the e ectiv e number of listed points and reducesthe complexity
or enhancesthe performance.
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Figure 4.31: Histograms of the number of points in the list of the shifted list spheredecaer
and the list spheredecaler certered on the received point.(1;5=7)g parallel turb o-code over an
ergodic 4 4 MIMO channel with 16-QAM input. SNR=5:3dB, BER=10 °.
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Conclusions and perspectives

We presened near capacity and near outage performanceover multiple antenna channelsthanks
to optimized bit interleaved coded modulations. The designconclusionssum up in the following
points, original material found in this thesisreport is underlined and indicated by a star.

If the channelis ergadic, the amount of available time diversity is much more greater than
the minimum Hamming distance of the code. In this casethe objective is not to achieve
full diversity but to maximize the coding gain. We preseried two methods to achieve near
capacity performancefor a target bit error rate:

{ Useaturb o-codeto protect the binary data and processiterativ e joint detection and
decaling with a nearoptimum or exhaustive APP detector. A gray mapping provides
the best performancewith suc a good code.

{ Use an optimized multi-dimensional mapping* with large potential gain. A simple

error correcting code is necessaryto allow a good convergenceand achieve near turb o-
codesperformance.

It the channelis block fading and the amount of available diversity low, the systemshould
be designedto guarartee the full diversity order. This is achieved with the three following
steps:

{ The detector converts the MIMO block fading channel into a simple block fading
channel. The error correcting code is capable of collecting an amount of diversity
limited by the singletonbound applied to the equivalent block fading channel. When a
linear precader is used,compute the minimum time spreading* factor that guarartees
full diversity distributing the diversity exploitation between the detector and the
decder.

{ Designa linear precoder* that providesa diversity proportional to the spreadingfac-
tor times the number of receiwe antennas.

{ Choosean error correcting code whoseHamming distance is greater than the maxi-
mum transmit diversity order. Designa channel interleaver* taking the error correct-
ing code structure into accourt in the aim of satisfying the ideal interleaver condition.
Note that the ideal interleaver existenceis given by the choice of the spreadingfactor
with the singleton bound.

Once the full diversity order is guaranteed, the coding gain is maximized if the linear
precader satis es the DNA condition under ideal interleaving. Optimize the channel in-
terleaver to approadc the ideal channel interleaving condition. In general,the frame error
rate increaseswith the frame size. However, concatenatederror correcting codes such as
turb o-cadesallow to obsene a frame error rate decreasingwith the frame size,and achieve
near outage capacity performance.
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We have expressecdexact pairwise error probabilities* for ergadic, block fading, and precaded
MIMO channels. The asymptotic expressionsof the performancegive the designcriteria for the
binary labeling, the linear precoder and the choice of the error correcting code. Moreover, the
pairwise error probabilities can be usedto tightly evaluate the error rates of the ideally inter-
leaved BICM using either a union bound or a tangertial spherebound.

The bit interleaved coded modulation is designedin the caseof a maximum lik elihood decad-
ing on the global Euclidean code. However, sudh a decader is intractable and an iterativ e joint
detection and decaling is processedo adchieve near-ML performance. The detector complexity
ewlvesexponertially with the spectral e ciency . We proposeda new list spheredecaler* that
achievesnear optimal APP detection and allows a strong complexity reduction on both ergadic
and block-fading channels.

The future work should include:

Optimize the binary mappingsfor block fading channels. The derived pairwise error prob-
ability over a MIMO block fading channel provides the designcriterion.

Minimize the error rate at the rst iteration in the goal of acceleratingthe iterativ e pro-
cessingand giving good performance if no computational resourcesare available at the
receiver for iterativ e processing. Indeed, the linear precaders satisfying the DNA condi-
tion guarantee optimal coding gain and full diversity under ideal interleaving condition
and ML decaing or corverging iterativ e joint detection and decading. However, if the
optimized interleaver cannot achieve the ideal condition, more than one erroneousbit can
be transmitted in a time period. Sincethe DNA condition doesnot x all the system
freedom degrees,the precoder can be designedto minimize the error rate when di erent
rows of the linear precader matrix are interfering at the sametime. Furthermore, at the
rst iteration of the decaling process,the detector has no feedbak from the decader and
all the rows of the linear precader matrix are interfering.

Find the condition to be satis ed by an error correcting code to allow an error rate decreas-
ing with the frame length, and the expressionof this decreasingfunction. The behavior of
the error rate with the frame length can be deducedfrom the error rate expressions.

Other concatenatedcodesthan turb o-cadescan be usedto achieve the outage probability.
One objective is to design LDPC-lik e codesfor MIMO block fading channels.

Sud a bit interleaved coded modulation achieves near capacity performanceat the price of
a large complexity. A sub-optimal soft-input soft-output minimum mean square error can be
used instead of the list APP detector. If the channel is ergadic, we obsene right shifting of
the waterfall region and if the channelis block fading, we obsene a coding gain loss. Sincethe
bit interleaved coded modulation optimized in this thesisreport are designedfor ML decading,
any sub-optimal system being asymptotically near-ML should have full diversity and optimal
coding gain too. Somesupplemenary researd will be madeto considerlow-complexity scheme
for practical systemapplications. Finally, the space-timebit interleaved coded modulation can
be applied to OFDM and multi-user techniques suc as MC-CDMA for the next generationsof
mobile phonesand Internet wirelesstechnologies.
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App endix A

Tangenti al sphere bound

In this appendix, we describe the tangential spherebound, rst presened in [39)[40][65]. The
most classicalway of evaluating the performanceof digital communication systemsis given by
the two steps: compute the pairwise error probability and apply the union bound. The exact
error rate is given by the averaging of the probability that the noise gets out from all possible
Voronoi regions. The union bound provides a looseupper bound of this last probability for high
noise levels becauseit adds non-independert probabilities, or more precisely it integrates the
noise over non-disjoint spaceregions. The idea of the tangertial spherebound is to limitate the
intersectionsbetweenthe integration regions.

We considerthe systemy = x +

The Voronoi region Vy certered on the transmitted point x is included in a sphere. From
the lattice and coding theory, the radius of the sphereis commonly hamed covering radius re.
Let us considera radius R > r¢, the error probability is equal to

P(y2Vy) =Pk k< R%Zy2V,)+ P(k k¥> R?) (A1)

First, let us considerthe computation of P(y 2 V). The norm of hasa chi-squaredistribution
with parameters2n and 2 = 1=2:

@n 1g
p()= W (A.2)
We notice that 7
r2 na
a(r?) = ——d (A.3)
0 .

is the cumulativ e pdf of a chi-square random variable with parametersn and 2 = 1=2. There
exists a closed-formexpressionfor 2, (r?):
n5<2 1 2 k
2 1 r
(=1 e o 52 (A.4)

2
o K2

but there is no closedform expressionfor 3., (r?). The probability to get out from the sphere
is YA +1
P(k k*> R?) = p()d =1 3,(R? (A.5)
R
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Figure A.1: Tangertial Spherebound Figure A.2: Approximated tangential Sphere
bound

Now we have to compute P(k k? < R2%y 2 V). The ideais to apply a union bound in the

sphereas shown in Fig. A.1l. In this case,the intersection of the pairwise integration region is

limited, and the performance estimation will be tighter than with the classicalUnion Bound.

We have X

Pk k*< R%y 2V,) pr(x! x9 (A.6)
x9d(x;x 9=2<R

wherepr (x ! x9Y isthe pairwise error probability betweenx and x°and assumingthat k k? < R.
The n-dimensional circularly symetric complex gaussiannoise can be decomposedinto

k» @ mono-dimensionalreal additiv e white gaussiannoisein the dimension colinear to the
direction (x; x9.

»,a2n 1l-dimensionalreal additive white gaussiannoisein the dimensionsorthogonal
to the direction (x; x9).

The probability density p .s of the noiserestricted to the sphereS, projected on the dimension
colinear to the direction (x; x9 is

1 _
Pis() = Py 7% B 1(RT 19) (A7)
The probabibility pr (x ! x9 is equal to
Z R Z R 1
2 —
pr(x! x9= ps(r)dr = ps——e "N 3 (R r?dr (A8
d(x;x 9=2 d(x;x 9=2 2 No

The function 3, ;(r?) hasto be computed numerically. however, we canuse 3, ;(R? r?)
2 . R2 (d(x;x9=2)*> which leadsto
Z R

pr(x! X9 . U)sz—Noe =MNogr 2 . R2Z  d(x;x9=2 2 (A.9)
x;x 0) =
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For large dimensionsand consideredpoints x° this upper bound is closeto the true value of
the probability. In Fig. A.2, we canobsene the geometricalinterpretation of the approximation.

We get

X d(x; x R
P(y 2 Vx)' Q —9—2( N—() Q p== 2 0 RZ dx;x%=27% +1 2 (R?
0 d(x-x 0)= 0 0
xGd(x;x 9=2<R

(A.10)

We proposeanother simpli cation consideringthat the union bound is computed on two real
dimensionsand the spherebound on the remaining n 2 dimensions. This would lead to

X d(x; x R
Py 2V Q ?(QN:% Q p= ko R? dxd27 41 G(RY
x%d(x;x 9)=2<R 0 0
(A.11)
where
X 2 gk
Ba)=1 e o (A.12)
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App endix B

Soft-i nput soft-output MMSE
Detector

In this Annex, we remind the SISO-MMSE construction presened for single antenna frequency
selective channelsin [28] and adapted to MIMO channels. Such a soft-input soft-ouput detector
is sub-optimal when compared to the APP exhaustive detector, specially for low signal-to-
noise ratios. However, it hasthe great advantage to provide near-optimum performancefor a
su cien tly high signal-to-noiseratio and with a strong complexity reduction for ergadic channels.
The principle of such a detector is to view the ny n, channelasn; interfering 1 n, MIMO sub-
channels. It usesthe information givenat ead iteration by the decaler to cancelthe interference
of the sub-channels.

First we compute the a priori probability assaiated with the modulation symbols from the
a priori on the coded bits given badk by the SISO decader. Then, we are able to estimate the
constellation symbols thanks to the a priori probabilities on the symbols. Finally, we convert
the estimated symbols into extrinsic probabilities to be given to the SISO decaler input as a
priori probabilities.

The classical SISO detector computesextrinsic probabilities f (c;)g taking into accourt the
a priori probabilities f (cj)g with j 6 i. In an iterative processingbetween two blocks, the
probability at the output of a block in iteration n should not be given badk in the input of
iteration n + 1, sincethis would intro duce dependencebetweenthe random variables.

A priori probabilit ies of the constellation symbols

First of all, we have to compute the a priori probabilities (z;) of the modulation symbols
from the a priori probabilities (c;) of the coded bits. Assuming independencebetweenthe
interleaved coded bits:
miym 1
(z) = (c) (B.1)

j=mi

Where m is the modulation spectral e ciency . We de ne the a priori-based mean z; of the

symbol z; by
X
zi, Efzg=  z (z) (B.2)

Zj
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The a priori-based variance E;i of the symbol z; is de ned by
X
4 Eizi® jzit= jai? (@) jal? (B.3)

Zj

Symbol estimat ion
A MMSE detector for the symbol z; on the i-th antennais a linear Iter w; that provides

z = Efzg+ly Efydw, (B.4)
by minimizing the meansquareerror E jz #j% , we nd
w; = covfy;zigcovfy;yg * (B.5)
The covariance function covf x; yg is de ned by
covfx;yg, Ef[x Efxg] [y Efydlg (B.6)

The a priori information of the consideredsymbol z; should not be usedfor the estimate z. We
de ne

z, [z0:::57zi 1,0,Ziv15:005 20, 4] (B.7)
We have
covfy;yg=H {H + Ngl (B.8)
where
i=covfzizg= 2ot 2y 1B Zivaiiin Za 1 (B.9)

Indeed, the independencebetweenthe coded bits leadsto the independencebetweenthe symbols
and covfzi;zig= Ofori 6 j. The two quartities Ng and Es are the variancesof the additive
noiseand transmitted signal, respectively. We have

covfy;zig= covfz;zgH = Efzjz zjgH = EsgH (B.10)
where g is a vector with a unique non-null term equalto 1 in position i.

Using (B.4), (B.5), (B.8), (B.10) and noticing that Efzg = 0 and Efyg = zH, we can
write the expressionof the symbol estimate z as

#=Esly zH][H iH+ Nol] *(aH) (B.11)

It isimportant to notice that the matrix inversionhasto be computed for ead symbol detection
(n¢ times), ead iteration and time period, even for block fading channels. If no a priori is
available (rst iteration), the soft detector is equivalent to a classicalMMSE detector.

Soft -out put on the bits
We make the assumption that the estimated symbol z is transmitted on an equivalent AWGN
channel, i.e, there is no interference anymore from the n; 1 other transmit antennas. This
situation occurswhen the feedbadk from the decader is su cien tly reliable to e ectiv ely cancel
the interference.

z= izi+ 0 (B.12)
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The two parameters of the equivalent AWGN channelz  N¢( iz; %) have to be estimated
for eadh new symbol detection.

Efz ;9= iEs=Efzjz zjgHw, = EsgHw; (B.13)

which leadsto
i = qHw, = Es(gH)[H iH + Nol] *(aH) (B.14)

The variance 2 is given by
2 — Efi i = w . 1 2 — . .
0= Efi ijg=wi[H iH+ Nol] ~w; ‘Es= i(1 i)Es (B.15)

Thanks to the AWGN channel assumption and the Bayesrule, we can write

. o _ P(zzi) (z)
P(zijy) P(ziizn)= T o) (B.16)
The extrinsic probability can be deduced:
P (zj .
@)1 2 ) oz ©.17)
(z1)
Using the complex AWGN equivalent channel hypothesis, we can write
n #
. 1 iz iz
pzjz) = 5-exp AL (8.18)
0 0

Assume a mono-dimensionalcomplex mapping ! is usedindependertly on ead transmit an-
tenna. The extrinsic probabilities on the coded bits (cj+im ) can be expressedoy the expression

X I:i:m(+m 1
(G+im) = P(zjz) (@) (B.19)
zi2(¢) I=im; 16]

where 1(c,-) represerts the set of mono-dimensionalcomplex constellation symbols with their
j-th bit equaltoc (O j m 1)
In order to solve the proportionalit y issue,we compute the normalization of the soft-output:

P . Q
#2 =1 p(ZTJZ(Q 16 (a)

z2 1P(#jzZi) Y|gj (c) (8:20)

(G+im) =
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App endix C

Parti al fraction expansion

We want to decompsea function having the following form:

1

= (@)
f(x) er<l=1 (X + ayg)

(C.1)

into partial fractions. We assumethat 8(i 6 j);a 6 a. Applying the Bezout's theorem, we
can sgy that there exists polynomials Ay (x) with degAx(x)) < ng sud that

1 X Ax)
f =Q = — C.2
(X) YEzl (X + ak)nk - (X + ak)nk ( )
M the Taylor's th hawsthat A0 = © N ki iy ghi d
oreover, the Taylor's theoremshowsthat Z55m = £y a9 N this case,we candecom-
posef (x) into
()= Qp— R €3)
X) = = — C.3
ke (X @)™ ket = OCF )
We can compute the j; coe cien ts via a seriesexpansionwith x =" ;.
1 1 ¥ 1
Qn n = wn Qn n " n (C4)
k=1 (X + &) : k=1;k61'(ak aj) “ k=1:k6] (1+ ak ai) “
2 . . , 3
1 W K 1( 1) nk+i| 1 wj
= _0Q 4 : + O(""{8.5)
N ek @ @™ (@ &)
¢ 1 ;1
- " diom= o (C6)
"nj i "nj i .
i=0 i=0
In this case, j.n; i = j.i, Wherethe j\ coe cien ts are obtained by identifying the degree
k < nj coe cien ts of the seriesexpansion
i X1+ O(XM) = L X1+ O(X™) (C.7)

(ax @)

i=0 k=1:k8j i=0
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Filed Patents

List SphereDecading of Symbols Transmitted in a Telecomnunication System.

Method for transmitting data in a MIMO telecommnunication system o ering a high
diversity as perceived by a receiver end.

Method for transmitting optimally interleaved data in a MIMO telecomnunication
system.

Method allowing an enhancediterativ e interpretation of received symbols.

Method for interpreting transmitted symbols allowing an iterativ e adaptation of a
basiclist of symbols.

Method for interpreting transmitted symbolsinvolving a list sphereradius tuning step.

Method for transmitting uniformly distributed data in MIMO telecomrunication sys-
tem.




