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Abstract— In this paper, we propose a new construction of
linear unitary precoders for multiple antenna fading channels
based on an information theoretical tool and we compare its
performance with some known algebraic precoders. The new
precoder has been selected in the ensemble of random unitary
precoders by minimizing the outage probability associated
to the instantaneous mutual information. Then we consider
a bit-interleaved coded modulation where a non-systematic
non-recursive convolutional code is cascaded with a linear
modulation and a block-fading multiple antenna channel. The
word error rate performance of the proposed precoder is
illustrated under iterative detection and decoding.

I. INTRODUCTION

The need to transmit at high data rates with better per-
formance has recently motivated research on signal process-
ing and coding for multiple-input multiple-output (MIMO)
channels. As multiple antenna systems have large capacity,
design criteria have been set up for space-time signals used
in these systems through minimizing the pairwise word
error probability [11][19]. Orthogonal and algebraic designs
allowed to achieve very high data rates with full diversity
and very good performance in uncoded systems and quasi-
static fading environments [8][17][2].
Precoding signals for fading channels, which is well known
in single antenna transmissions, has been rediscovered for
multiple antenna channels. Battail was the first to suggest
rotations to combat channel fluctuations [1]. The pioneering
work on multi-dimensional rotated modulations achieved in
the nineties, such as [3][7][4], opened the way for the study
of multi-dimensional rotations (i.e. linear unitary precoders)
in MIMO channels.
Rotations in single antenna systems have been designed by
classical algebraic criteria, except for orthogonal transforms
proposed by Rainish which are based on the minimization
of the cut-off rate [16]. Also, it has been shown in [15] that
random rotations perform as good as algebraic rotations in
a high-diversity high-dimensional environment. In [13], the
authors proposed an information theoretical tool to design
space-time codes. They designed codes that maximize the
ergodic capacity of the channel, but such space-time codes
perform poorly on a non-ergodic block fading channel.
Furthermore, space-time signal modulations must be com-
bined to error-correcting codes in order to achieve optimal
performance in the information theoretical sense.
In [5][10], the authors considered bit-interleaved coded mod-
ulations [6] for space-time coding (ST-BICM). They showed
that quasi-optimal global ML performance of the coded

modulation is achieved by imposing specific constraints
(called genie conditions) on the structure of the space-time
precoder. The ML performance is attained in practice after
some iterations in a joint detection/decoding process at a
high signal-to-noise ratio.
We propose in this article full-rate rotations that minimize
the outage probability of a MIMO system in block fading
environments. The paper is organized as follows: section
II presents the system model and notations, section III
describes different design techniques for space-time codes,
including the outage minimization criterion. Computer sim-
ulation results and conclusions are drawn in the last section.

II. SYSTEM MODEL AND NOTATIONS

Consider a multiple-input multiple-output system with ���
transmit and ��� receive antennas. The channel is supposed
to be frequency non-selective (no inter-symbol interference)
and known to the receiver but not to the transmitter (CSI at
the receiver side only). The number of independent channel
realizations observed during one codeword transmission is
denoted by ��� . The parameter ��� takes values from 1
(quasi-static fading) up to the codeword time length (ergodic
channel). The input-output channel model is given by

�
	���
������ (1)

where �
��������� QAM � �"!�# , 
 is the linear precoder matrix
(also called full-rate space-time block code in the MIMO
community) of size $%�&�('�$%�)� . The integer parameter $
represents the time spreading of the precoder, *,+-$.+/���0� � .
We restrict our study to unitary precoders, i.e., 
21)34	5
76 .
The $%�)�8'�$%�&� MIMO channel matrix � has $ blocks on
its diagonal and zeros elsewhere. Each block is associated
to the transmission over the �&�9':�&� MIMO channel during
one channel use. We can see 
�� as a new correlated MIMO
channel and call a precoding time period the group of $
channel uses associated to the matrix 
7� . Finally, �;�=< �>!�?
is the channel output and � is an additive white gaussian
noise with zero mean and variance @�A per real component.

III. LINEAR PRECODING DESIGNS

A. Known Design Methods

Let us briefly recall some of the known methods used to
design space-time precoders.B Design based on pairwise error probability: this is the well-
known criterion of maximizing the rank and the determinant
of the difference matrix [11][19]. Algebraic methods were



used to design space-time codes that are full-rate [17][2][8],
i.e. one symbol per transmit antenna per symbol time.
Such algebraic space-time precoders have been optimized
for uncoded linear modulations under maximum-likelihood
detection. Some of them do not exist for all values of ��� .
Furthermore, all precoders designed by this criterion for the
quasi-static channel have been developed with full-spreading
where $ 	 �)� . As an example, the Golden code [2] is an
algebraic precoder optimized for �&� 	 �&� 	 $ 	 � , its
precoding matrix is
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The weak point in constructing rotations via the pairwise
error probability criterion is the fact that error-correcting
codes that may be serially concatenated with the precoder
are not taken into account by the design criterion.

B Design maximizing the ergodic channel capacity:
linear dispersion (LD) codes [13] are designed for multiple
antenna channels by a search that maximizes the ergodic
capacity under a gaussian channel input. Such a design is
not necessarily suitable for a block fading channel with a
finite number of states, e.g., ��� 	 *�& � &�' , etc. Also, the kind
of input alphabet is not considered in the search for linear
dispersion codes.

B Design based on genie conditions: this construction was
introduced in [5] where perfect a priori probability feedback
is assumed in the iterative joint detection and decoding of
ST-BICM. In order to guarantee maximum diversity order
and maximum coding gain at the output of the detector,
the design must guarantee two conditions: 1- Orthogonal
sub-rows in the linear precoding matrix, and 2- Equal norm
sub-rows in the linear precoding matrix. In ST-BICM, there
exists a strong interaction between the error correcting code
with interleaving and the linear precoder, both in terms of
diversity and coding gain maximization [10]. Complexity can
be controlled by the choice of a minimal spreading factor $
that guarantees full diversity [9]. The genie conditions are
optimal, in terms of ML performance, when all diversity
given by the transmit antennas is collected at the detector
(i.e. $ 	 �)� ). A supplementary condition called “Dispersive
Nucleo Algebraic” (DNA) has been proposed in [10] to keep
optimality when $)( �)� while having the genie conditions
on sub-groups of transmit antennas.
As an example, the cyclotomic rotation given below is an
algebraic precoder satisfying the genie conditions for ST-
BICM with � � 	 $ 	�� :

��*,+�-�.0/1� 3
A

���� 3 3 �2��3�4	5���� 1 ����3�465�� �������465�� � 7��2����4	5���� 1 �2��"�4	5���� 7��2��"�4	5�� ���� 8�465�� � 1 ��� 8�465�� � �2������4	5���� ����� ��4	5����� ��3�465�� � 1 7�� ��3�4	5�� � 1 � �2� ��4	5���� 1 7�� ������4	5�� �
# $$% (3)

Consider the space-time bit-interleaved coded modulation
drawn in Fig. 1. This ST-BICM is a serial concatenation of

a rate 94� binary convolutional code, an interleaver of size:
bits, and a QAM mapper followed by the precoder as

described in the previous section. When 
 is the identity
matrix, the ST-BICM diversity order is upper-bounded by
[14]: ;

+�� � �	< ��� � � � * � 94� ��= � * � (4)

The maximal diversity given by the outage limit under a
finite size QAM alphabet also achieves the above Singleton
bound [12].
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Fig. 1. Space-Time BICM transmitter scheme.

With a vanishing coding rate, i.e. 9.�?>A@ , it is possible
to attain the overall system diversity order ��� � � �)� produced
by the receive antennas, the transmit antennas and the
distinct channel states. Unfortunately, this is unacceptable
due to the vanishing transmitted information rate. Precoding
is one means to achieve maximum diversity with a non-
vanishing coding rate. Under linear precoding that spreads
QAM symbols over $ time periods, the Singleton bound
becomes [9]: ;

+ $ �&� �6< � � �)��B�$ � * � 9 � ��= � * � (5)

Now if 94� 	 * , from the above inequality, we observe
that precoding may achieve maximal diversity � �"� � without
the use of error-correcting codes. Unfortunately, near outage
performance is impossible in this case due to the weak
coding gain of all kinds of precoders. The near-outage
performance of ST-BICM is a judicious trade-off between
error-control coding and linear QAM precoding. Hence,
we propose a simple information theoretical design of
multi-dimensional rotations that take into account the
interaction between channel coding and symbol space-time
spreading.

B. New Design Method: Information Outage Minimization

For a fixed rotation 
 and � � fixed MIMO channel
matrices �DC , E 	 *GF	F!F"� � , defined by the � � fading blocks,
let H �,I 	KJ � �ML � � denote the average mutual information
of the equivalent channel with QAM input � and complex
output � as in (1). The expression of H �,I is

NPO�QSRUTWV XYV ZP[W\^]Z`_ba -cdfehgji1kWl m6n O�QhoGprq0sut6vxwzy k�{	|P}�~,� � {2���M� d��|P}�~,� � ���M� d������
(6)

where �?�	� ��� �,I o is the conditional mathematical expectation
over � and � . The channel likelihood is written in its classical
form |P}f~`� � ����� �M�)���	��� \Y� ~ \ � �M� � v�u� v � (7)
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Fig. 2. Outage limits for �����������
	�� � , ��
���� , and ��������� � .
Expression (6) assumes that the precoder � does space-

time spreading within the same fading block ��� . Its main
role is to collect transmit diversity. Time diversity ��� is
collected by the convolutional code whereas receive diversity
is naturally collected by the detector. The information rate
transmitted by the space-time BICM is ������ !" �$#% �&� bits
per � time periods. An outage occurs if the instantaneous
capacity, i.e. '�(*) in our case, is less than � . The outage
probability associated to the rotation � at a given signal-to-
noise ratio is +�,.- �0/2143 � + / 5�687:9 	<; =>; � � ; � �%3 (8)

The new design, called IOM (Information Outage Mini-
mization), selects a matrix �$?%@BA within the ensemble C of
random unitary matrices such that

�D?%@�AE�GF8HJIEKMLON(4P�Q R�S�T #%UV�XW (9)

As an example, choosing the best rotation within an en-
semble C limited to 2000 matrices yields the matrix written
below, for QPSK alphabet with � # �Y�&�GZ and coding rate� � �\[^]_Z
(a`cb*dfe

ghh
i
jlk m�n%o0p_qVrcs turvjwk x�y<o0p8qurus zVzvjlk {cy<oJ|8qVrcs }�~�jlk yJ�%o0p_qVrcs �V�jlk �.y<oJ|8q��.s ~���jwk m<{�o0p8q��0s }V��jlk mJnJo0p_qVrcs ����jlk m.y<o0p_q��.s �utjlk m��%oJ|8qVrcs ��}vjwk jJy%o%|8q��0s ���vjlk x%{�oJ|8qVrcs �V��jlk m��%o0p_qVrcs �Vzjlk yJx%oJ|8q��.s }���jwk mJn%o0p8qurus t���jlk mJ�Jo0p_q��.s ��z�jwk y%�%oJ|8q��.s �V�
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�

A smaller set CD� of random unitary matrices is obtained
by adding to C the first genie constraint, i.e. orthogonal
sub-rows in � . This second design, called G-IOM, selects
a matrix �$��� ?J@�A satisfying

�D�X� ?%@BA �GF8HJI�K�LON(�P�Q_� R S�T # U��XW (10)

As an example, choosing the best rotation within an ensem-
ble C � limited to 2000 matrices yields the matrix written
below, for QPSK alphabet with �$#��Y�&�GZ and coding rate�����\[^]_Z
(8� | `cb�d e

ghh
i
jlk �J�JoJ|8q��0s �V� j j jlk y%�JoJ|8q��0s zVzjlk y%�JoJ|8q��0s �V� j j jwk �J�Jo.p8q��.s zVtj jlk yJn%oJ|8q��.s r���jlk ���%o0p_q��0s }Vz jj jlk �J�Jo0p_q��.s ~���jwk y%n%oJ|8qVrcs �u~ j

� ��
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Fig. 3. Outage limits for �������*���
	�� � , �*
���� , and �$�������J� .
In a similar fashion, a DNA-IOM precoder minimizes the

information outage and satisfies DNA constraints [10]. The
matrix �D�X ¢¡ given below corresponds to �$#��¤£ and �¥��Z .
The DNA-IOM precoder is obtained by combining ���¦ §¡
with ¨ �X ¢¡ � ?%@BA . Also, the DNA cyclotomic precoder is
constructed by combining ���X ¢¡ to ¨ �X ¢¡ ��©Bª �V« S �¬� ©Bª �V« S
given previously in (3).

(8­4®D¯°e
ghhhhhhhhh
i

± r�r ± r�� j j ± r�� ± r�� j jj j ± rVr ± r�� j j ± r�� ± r��± �ur ± �V� j j ± ��� ± ��� j jj j ± �cr ± ��� j j ± �V� ± ���± �ur ± �V� j j ± ��� ± ��� j jj j ± �cr ± ��� j j ± �V� ± ���± �cr ± �u� j j ± �V� ± �V� j jj j ± �0r ± �V� j j ± �u� ± �V�

� ���������
�

± ­4®D¯ | `cb*d²e
ghh
i
jlk n��%oJ|8q��.s }urvjlk ���%o0p_q��.s �V��jwk {.mJo.p8q��.s ����jlk x%{�o0p_q��.s zV~jlk �%{�o0p_q��.s ~V~�jlk m�x%o0p_q��.s �V��jwk xJ�Jo.p8q��.s ��z�jlk m.j<oJ|8qVrcs ��~jlk m�n%o0p_q��.s t�~�jwk {.�%oJ|8qVrcs �V}³jlk mJnJoJ|8q��0s �V�vjlk m�n%o0p_q��.s ~V�jlk ���%o0p_qVrcs �cr�jlk n��%o0p_q��0s �u~�jwk m<{.o.p8q��.s �Vt�jlk �.j<o0p_q��.s ~cr

� ��
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Figures 2 and 3 show the outage limit for different type of
precoders in terms of Word Error Rate versus signal-to-noise
ratio. The outage probability has been also evaluated for
other system parameters. Surprisingly, algebraic precoders
satisfying the first genie condition perform as good as G-
IOM precoding. Cyclotomic rotation and Golden code are
superimposed with G-IOM in Figure 2. All outage eval-
uations have been made by (6) and (8), without gaussian
and analytical approximations when the channel input is a
gaussian alphabet as in [18][20].

IV. SIMULATION RESULTS AND CONCLUSIONS

In order to emphasize the diversity order created by
coding at the transmitter side, all computer simulations have
been conducted with the number of receive antennas ��´µ�\[ .
Figures 4 and 5 illustrate the word error rate performance
of a space-time BICM for �$#���Z transmit antennas, �B���GZ
channel states, �¥��Z time period spreading and a coding rate�&�§�¬[a]8Z . Figure 4 illustrates the case with �$#��¶£ transmit
antennas and a precoding spread factor ���·Z . At the first
iteration, for �$#>�¸Z , IOM precoding slightly outperforms
other rotations. After 10 detection/decoding iterations, IOM
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is outperformed by G-IOM and other algebraic rotations. The
slight difference in performance is still apparent for ��#��¤£ .

From the observed performance and the flexibility of
linear precoders, we conclude the following. Cyclotomic
rotations satisfying genie/DNA conditions are the best choice
for precoding in space-time bit-interleaved coded modula-
tions. These rotations are optimal in both algebraic and
information theoretical senses. They exist for any set of
MIMO channel parameters, mainly the number of transmit
antennas and the precoder time-spreading factor.
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