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Abstract—Real convolutional lattices over the ring of
integers Z are considered in this paper. We study the
stability of convolutional lattices under sphere decoding.
A new stable family of time-alternating convolutional
lattices is proposed. The structure, the parameters, and
a performance example are shown for time-alternating
convolutional lattices. These lattices can be used as
constituent blocks in concatenated coded modulations for
control and communication.

I. INTRODUCTION

Lattices are the real Euclidean counterpart of error-

correcting codes. They are discrete additive subgroups

of R
n. Lattices are used to process information in

many scientific areas such as channel coding, source

coding, and cryptography [1][2][3]. Lattices in this

paper are real, they are modules over the ring of

integers Z [4]. Construction over the ring of Gaussian

integers or any other complex ring are not considered

here. See [1] for an extensive list of lattices and their

mathematical properties.

Why are we considering convolutional lattices?

Their main interesting property is causality. Convo-

lutional lattices allow for causal encoding and causal

decoding, hence they are suited to control applications

where feedback should be produced almost in real

time. Convolutional lattices, also named Signal Codes,

were first introduced in [5]. Signal Codes are defined

over complex fields and the authors were not interested

in causality, mainly at the decoder side. Also, a recent

work on turbo-like codes based on complex lattices

appeared in [6] for low spectral efficiency. Our goal

is to build high spectral efficiency coded modulations

(based on lattices) for control and communication sys-

tems. Time-alternating convolutional lattices described

in this paper are a first step towards this goal.

In asymptotic dimensions, sufficient conditions are

known for lattice codes to achieve the capacity of

the additive white Gaussian noise channel. Under

Construction A, a finite constellation can achieve the

capacity of the Gaussian channel if two conditions are

met: Poltyrev goodness and Covering goodness [2].

For lattices in finite (small) dimensions, the design

relies on the packing goodness. Indeed, in a way

similar to error-correcting codes where the Minimum

Hamming distance is a main parameter for code

optimization at short length, the packing density is

the main parameter for lattices in non-asymptotic

dimensions. The packing density of a n-dimensional

lattice Λ ⊂ R
n is usually measured by its Hermite

constant γ, also referred to as its fundamental gain [7],

given by the following ratio

γ =
d2Emin

vol(Λ)2/n
, (1)

where d2Emin is the minimum squared Euclidean dis-

tance of Λ and vol(Λ) is its fundamental volume.

Hermann Minkowski gave a non-constructive proof

that good lattices exist [8]. At large n, Minkowski’s

bound is expressed as

n

2πe
. γ. (2)

Kabatiansky and Levenshtein gave an upper bound to

the packing density [9], a bound expressed as

γ .
1.744 n

2πe
. (3)

From the bounds (2) and (3), it can be stated that dense

lattices should satisfy γ = Θ(n). This paper aims

at designing dense (but not very dense) convolutional

lattices with γ = Θ(nκ), κ < 1.

The paper is structured as follows. Convolutional

lattices are defined in the next section. Stability of

sphere decoding and unstable convolutional lattices are

considered in sections III and IV respectively. Stable

time-alternating lattices are described in Section V

before the conclusions.

II. CAUSAL AND CONVOLUTIONAL LATTICES

Let G be a n × n generator matrix of a lattice Λ
of rank n in the real n-dimensional space R

n. Row

convention is assumed. The Gram matrix is a positive

definite symmetric matrix Γ defined as follows:

Γ = G ·Gt, (4)

where Gt is the transpose of G. In other words, Γ
contains all scalar products of basis vectors, a basis

of Λ is represented by the rows of G. The following

well-known result can be found from matrix properties

in Linear Algebra.

Theorem 1. Any lattice Λ of rank n in R
n admits a

lower triangular generator matrix.

There are many ways to prove the above theorem.

Hermite Normal Form reduction generates a lower

triangular matrix for any integer lattice [10]. For

general real lattices, apply the QR decomposition

to Gt [11][12] and write it as Gt = Q · R, where

Q is orthogonal and R is upper triangular. Then,



G = Rt · Qt, i.e. Rt is a lower triangular generator

matrix of Λ. It is important to note that the lower

triangular matrix is obtained from an original non-

triangular matrix by rotating the lattice in R
n via Q.

A proof based on Cholesky decomposition [11][12]

would be made by writing Γ = L · Lt which leads

directly to a lower triangular generator matrix L. The

n-dimensional rotation is found by Q = L ·G−1.

Let x = z · G be a lattice point, where z ∈ Z
n.

Assume G is already lower triangular. Suppose that

discrete time advances from n backward to 1, so the

information source is producing zn, followed by zn−1,

then zn−2, and so on till z1. From x = z·G, we deduce

that

xj = gjjzj +
n
∑

i=j+1

gijzi, (5)

for j = 1, . . . , n. The lattice coordinate at time j is

computed from input at time j and previous inputs.

Consequently, this lattice encoding is causal. From

Theorem 1, we get that any lattice Λ admits a causal

encoding via a lower triangular generator matrix.

Consider a channel output y = (y1, . . . , yn) re-

ceived in a time ordered fashion: yn, then yn−1,

etc., up to y1. A causal lattice decoder is a decoder

capable of decoding, at time instant j based on

(yj , yj+1, . . . , yn), all lattice coordinates xi, for i ≥ j.

A causal lattice decoder is not asked to be optimal in

the global Maximum Likelihood (ML) sense. Its main

task is to get a quick estimate (without delay) of the

transmitted point coordinates.

Definition 1. A lattice Λ is said to be causal if it

admits a causal encoder and a causal decoder.

Convolutional lattices are a special class of causal

lattices. In theory, they admit a causal decoder, but

it is not sure whether the decoder is feasible with a

reasonable complexity.

Definition 2. Λ is a convolutional lattice with mem-

ory L−1 if G is lower triangular and has L non-zero

diagonals. In this case, G is called a convolutional

generator matrix.

The n × n real matrices G = [gij ] defined below

generate convolutional lattices in R
n of memory 1 and

memory 2 respectively:

gij = δij +
1

2
δij+1, i, j = 1 . . . n, (6)

gij = δij +
1

2
δij+1 +

1

4
δij+2, i, j = 1 . . . n, (7)

where δij is the Kronecker delta.

The main diagonal (referred to as the first diagonal)

and the sub-diagonals in both matrices given above

have constant elements. A convolutional lattice Λ is

said to be time-invariant if gj+ℓ−1,j does not depend

on j for all ℓ and for all j, where 1 ≤ ℓ ≤ L

and 1 ≤ j ≤ n − L + 1. The two time-invariant

convolutional lattices defined by (6) and (7) exhibit

a very weak Hermite constant due to rows of small

norm in the generator matrix. A first approach for

building good convolutional lattices is to make the

diagonals time-variant via a log-normal distribution.

The following construction of G with L = 2, referred

to as the KB construction, yields a good packing

density with a fundamental volume close to unity:

• Generate n instances exp(ai) of a r.v.

exp(N (0, σ2
KB)). Sort {exp(ai)}ni=1 by

decreasing order and put on the first diagonal.

• Generate n − 1 instances exp(bi) of a r.v.

exp(N (0, σ2
KB)). Sort {exp(bi)}ni=1 by

increasing order and put on the second diagonal.

From the law of large numbers, the Hermite constant

denominator satisfies vol2/n = exp(2
∑

i ai/n) → 1.

The minimum Euclidean distance in the convolutional

KB construction is guaranteed to be high enough

thanks to the opposite sorting on the first and the

second diagonal.

Figure 1 shows the performance of a convolutional

KB lattice versus the distance to Poltyrev limit at

n = 64. The highest noise variance that an infinite

lattice constellation can sustain with a vanishing er-

ror probability is given by Poltyrev limit, σ2
max =

1/(2πe) [13]. The distance to Poltyrev limit, expressed

in dB, becomes 10 log10(σ
2
max/σ

2), where σ2 is the

noise variance on the Gaussian channel. For reference,

Figure 1 also shows a union bound to the error rate

based on the first elements in the estimated Theta

series of the KB lattice, the Leech lattice performance

in dimension 24, and that of the integer lattice Z
64.

The reader should not be surprised. The KB lattice

performance is wrong due to instability. This issue is

discussed in the next section.
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Figure 1. Performance of the unstable KB64 convolutional lattice
(L = 2). Detection of any overflow of z was not activated while
applying a 32-bit implementation of sphere decoding. The point
error rate is wrongly beating Poltyrev limit (0 dB).



III. STABILITY OF SPHERE DECODING

For real dimensions up to n = 100, sphere decoding

can be used to perform ML decoding of convolutional

lattices (with failure if the search radius is too small).

Notice that such small-dimensional lattices are well

suited to control applications where delay has to be

minimized. Nevertheless, convolutional lattices would

be interesting at large n, e.g. n = 10000 or more, for

other applications in Information Theory and Coding

Theory. Sphere decoding is not causal since it is a

block-oriented decoding. However, because it is equiv-

alent to a tree search, sphere decoding may become

causal after relaxing its ML optimality. In this section,

we consider the optimal (ML up to a radius failure)

sphere decoder.

Sphere decoding is known to be implemented in

two different methods [14]: 1- Pohst enumeration

where points are enumerated inside a sphere of a well

selected radius. The nearest point is kept as the best

candidate. The sphere may be empty if the radius

is too small. 2- Schnorr-Euchner enumeration where

parallel hyperplanes are enumerated, then points

inside those hyperplanes. In all cases, the inverse

matrix G−1 is required to perform lattice decoding.

If G is ill-conditioned, then sphere decoding won’t

be possible because G−1 cannot be numerically de-

termined with an acceptable accuracy. Indeed, the

condition number of a matrix G is

cond(G) = cond(G−1) = ‖G‖ × ‖G−1‖ ≥ 1, (8)

where ‖·‖ can be any matrix norm such as ‖·‖1, ‖·‖2,

or ‖ · ‖∞. A matrix that is not invertible has condition

number equal to infinity. The generator matrix G of

Λ is always considered to be non-singular (non-zero

fundamental volume). If the condition number is close

to one, the matrix is well conditioned which means

its inverse can be computed with good accuracy. If

the condition number is very large, then the matrix

is said to be ill-conditioned (nearly singular). The

computation of the inverse of an ill-conditioned matrix

is prone to large numerical errors. These errors may

lead to direct failure of sphere decoding.

Definition 3. Let Λ be a lattice defined by its n× n
generator matrix. We say that sphere decoding of Λ is

unstable if G is ill-conditioned, i.e. cond(G) ≫ 1. By

abuse of vocabulary, we will say that the lattice Λ is

unstable if cond(G) ≫ 1.

In all its versions, on a Gaussian channel, the sphere

decoder as an instance of ML decoding (with failure

if the search radius is too small) looks for the vector

ẑ in Z
n that minimizes

‖y − ẑ ·G‖2. (9)

So the search made by the decoder is on z, not on x.

For a given lattice point x, we have the trivial relation

z = x ·G−1. (10)

Again, we can see any potential instability of sphere

decoding by looking at (10). When cond(G) ≫ 1,

some of the entries of G−1 become very large in

absolute value. For a lattice point x near the origin,

the corresponding z may be extremely far from the

origin. A 32-bit or even a 64-bit implementation of

sphere decoding will fail for very ill-conditioned

matrices. From a geometrical point of view, the

condition number measures the amount of distortion

of the unit sphere (or any other region like the lattice

Voronoi region, in the corresponding vector norm used

to define the matrix norm) under the transformation

by the matrix. The larger cond(G), the more distorted

the unit sphere becomes when transformed by G. In

practice, this generates an overflow of z when the

decoder is looking for the nearest lattice point.

Figure 1 shows a wrong performance of the

KB lattice because its generator matrix is very ill-

conditioned. The sphere decoder, or its implemen-

tation, was not set to detect that zi was flipping

around the 32-bit limit and so the decoder was too

optimistically decoding the all-0 lattice point.

IV. UNSTABLE CONVOLUTIONAL LATTICES

We show in this section some simple examples that

illustrate how the inverse of an apparently innocuous

matrix, but with a large condition number, can be

numerically very unstable. First of all, recall that the

inverse of a matrix M ∈ Matn×n(R) (if it exists) is

equal to

M−1 =
1

det(M)
Adj(M); (11)

Adj(M) is the so called adjoint matrix of M , whose

(i, j)-th entry is equal (up to a sign change) to the

(j, i)-th minor of M , which is the determinant of

the (n − 1) × (n − 1) matrix obtained from M by

eliminating its j-th row and i-th column.

Now, consider the n× n double-diagonal real gen-

erator matrix G of a convolutional lattice (L = 2):

G =





















g1,1 0 0 · · · 0
g2,1 g2,2 0 · · · 0

0 g3,2
. . . · · · 0

... 0
. . . 0

...

0 · · · 0 gn−1,n−1 0
0 · · · 0 gn,n−1 gn,n





















(12)

and let us call H = G−1 its inverse. Applying (11),

one can easily show the following proposition.

Proposition 1. The (i, j)-th entry hij of H = G−1,

where G is double-diagonal, is equal to

0, if j > i, (13)

g−1
i,i , if i = j. (14)



For j < i, hij is given by the expression

(−1)i+j

det(G)

j−1
∏

k=1

gk,k

i
∏

k=j+1

gk,k−1

n
∏

k=i+1

gk,k. (15)

Formula (15) can take very huge values, even if the

entries of G are small. Expressions similar to (13)-(15)

can be established for L > 2. Consider the following

example:

G =



















1 0 0 0 · · · 0
2 1 0 0 · · · 0
0 2 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 2 1 0
0 · · · 0 0 2 1



















; (16)

the determinant of G is equal to 1, all its entries are

equal 1 or 2, but the (n, 1)-th entry of its inverse is

equal to 2n−1. As another example, consider G in

which the main diagonal contains only 1, while the

second diagonal contains the numbers from 1 to n−1:

G =



















1 0 0 0 · · · 0
1 1 0 0 · · · 0
0 2 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 n− 2 1 0
0 · · · 0 0 n− 1 1



















. (17)

Whereas the biggest entry of this matrix is equal to

n, the (n, 1)-th entry of its inverse equals (n − 1)!.
The two convolutional matrices given in (6) and (7)

are stable but their Hermite constant is poor. On the

contrary, the KB construction with good (estimated)

packing density turned to be unstable. Thus, while

constructing good convolutional lattices, one should

make a trade-off between packing-density and gener-

ator matrix stability.

A final example of an unstable convolutional lattice

in R
18 is given below. The generator matrix has 3

non-zero entries per column (except for the last two

columns) that are cyclically shifted from one row to

another. The first diagonal is given by the sequence

6,
1

16
, 3, 6,

1

16
, 3, . . . , 6,

1

16
, 3. (18)

The second diagonal has the sequence

3, 6,
1

16
, 3, 6,

1

16
, . . . ,

1

16
, 3, 6. (19)

Finally the third diagonal includes

1

16
, 3, 6,

1

16
, 3, 6, . . . , 3, 6,

1

16
. (20)

The generator matrix of the above 18-dimensional

lattice is ill-conditioned. Its inverse includes rational

numbers with huge integers and cannot be entirely

shown in this paper. We show in (21) the first column

of the matrix H = G−1.

1
6

−8
4607
288

105985
27648

− 990529
576

4564251647
1327104

104980331521
127401984

− 981316647745
2654208

4521802132477439
6115295232

104003968574937601
587068342272

− 972189978010605889
12230590464

4479747414704296998911
28179280429056

103036686633444629477377
2705210921189376

− 963148190256669653268289
56358560858112

4438083824016100317630798335
129850124217090048

102078400832849509976615818753
12465611924840644608

− 954190495043940770961729099073
259700248434180096

4396807722761646223081671072709631
598349372392350941184

(21)

The inverse matrix in (21) was found via a special

number theory software, Pari/gp, developed by the

Mathematics Institute at Bordeaux, France. Mathe-

matica by Wolfram fails in finding the exact inverse.

MatLab by MathWorks displays a failure message.

From (15) and its generalization to L > 2, we

deduce that the expression of hi,j includes products

of terms belonging to the same diagonal in G. A

stable G in large dimensions should include entries

that compensate each other on the same diagonal. It

is not clear how to select those elements and whether

the best choice is to consider time-invariant or time-

variant convolutional matrices. Nevertheless, we will

show in the next section a convolutional structure

that is sufficiently stable and exhibiting a positive

fundamental gain.

V. TIME-ALTERNATING STABLE CONVOLUTIONAL

LATTICES

We propose now an explicit construction of a stable

n-dimensional convolutional lattice. The ℓ-th diagonal

of its generator matrix, for 1 ≤ ℓ ≤ L, contains the

elements

(nαℓ , n−αℓ , nαℓ , n−αℓ , · · · , n(−1)n+2−ℓαℓ). (22)

This lattice is named time-alternating convolutional

lattice because the exponent alternates its sign along

a diagonal. The generator matrix of a time-alternating



convolutional lattice looks like, for n = 6 and L = 3,
















nκ1 0 0 0 0 0
nκ2 n−κ1 0 0 0 0
nκ3 n−κ2 nκ1 0 0 0
0 n−κ3 nκ2 n−κ1 0 0
0 0 nκ3 n−κ2 nκ1 0
0 0 0 n−κ3 nκ2 n−κ1

















.

A time-alternating convolutional lattice has the fol-

lowing interesting features:

• It is completely determined by the generating

sequence (κ1, κ2, . . . , κL).
• Its volume, for n even, is equal to 1 when no

trellis termination is applied. Indeed, in order

to avoid the first L − 1 rows, the encoder and

decoder consider z1 = z2 = . . . = zL−1 = 0.

This is equivalent to deleting the first L − 1
rows from G because they have weak norm.

This operation is named trellis termination. After

trellis termination, the new Gram matrix satisfies

vol2/n = (det Γ)1/n → 1 for large n.

• The product of an even number of consecutive

elements on the same diagonal is equal to 1.

• Numerical simulations show that, for reasonable

choices of the κℓ, the lattice is stable. Namely,

we considered κℓ = κ1 + (ℓ − 1) × ∆. For

example, at n = 64 and L = 5, a good choice

is κ1 = 0.8 and ∆ = 0.0775 leading to a

fundamental gain (Hermite constant) of 4.93 dB.

The performance is shown in Figure 2. Intuitively,

we can understand that stability comes from the

fact that all the elements of the inverse of the

generator matrix come from some generalization

of (15). Since our particular construction keeps

under control the product of consecutive elements

on a diagonal, stability can be obtained.

• In every row, the exponents of n have alternate

positive and negative sign. This avoids rows to

have too big or too small norm with respect to

other rows and helps obtaining a good fundamen-

tal gain for the lattice.

It can be shown that, in order to find a reliable

estimation of the minimum distance of the lattice, it is

sufficient to investigate the Theta series (up to a certain

layer via Pohst enumeration) of a lattice generated by

L consecutive rows of G. Furthermore, the shortest

vector satisfies the following.

Theorem 2. Let the shortest vector of a time-

alternating convolutional lattice be x0 = z0G and let

κℓ = κ1+(ℓ−1)×∆, where 0 < κ1 < κ2 < . . . < κL.

For L ≥ 3 and n large enough, if ∆ < 1
log2(n)

then

the Hamming weight of z0 is greater than 1.

VI. CONCLUSIONS

Convolutional lattices in the Euclidean space are a

good imitation of binary convolutional codes. Stability

is an important issue when building convolutional

lattices. We proposed time-alternating convolutional

lattices to render a good packing density with stable

sphere decoding. Besides sphere decoding, for reason-

able constraint length L, convolutional lattices also

admit message-passing (belief propagation) decod-

ing. Time-alternating convolutional lattices are dense

enough at small dimensions but not too dense. They

are good constituents for building new turbo lattices.
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Figure 2. Performance of the time-alternating stable convolutional
lattice, at dimension n = 64, constraint length L = 5, exponent
κ1 = 0.08, and step ∆ = 0.0775.
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