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EM-based Channel Estimation for Coded
Multi-Carrier Transmissions

Yang Liu∗†, Loı̈c Brunel†, and Joseph J. Boutros‡

Abstract—Expectation-maximization (EM) based iterative al-
gorithms are investigated in order to estimate the impulse
response of a frequency-selective multipath channel in a coded
OFDM system. Two ways of choosing the EM complete data
are compared: a complete data built from observations and
transmitted symbols (CL-EM) and a complete data chosen by
decomposing noise and observation components (NCD-EM). Both
CL-EM and NCD-EM algorithms are derived for a coded OFDM
system. The rate of convergence of both EM algorithms is
theoretically determined. It is found that the rate of convergence
of CL-EM is independent from the number of channel taps at
high signal-to-noise ratio (SNR), while that of NCD-EM varies
with the number of taps. It is shown that CL-EM converges in
a few iterations. Furthermore, considering the complexity per
iteration, CL-EM has a lower complexity than its counterpart.
We also establish a Craḿer-Rao bound (CRB) for coded OFDM
transmission. Simulation results show that CL-EM has a good
performance-complexity trade-off and it achieves the CRB.

Index Terms—Orthogonal Frequency-Division Multiplexing,
Expectation Maximization, Channel Estimation, Rate of Con-
vergence, Craḿer-Rao Bound.

I. INTRODUCTION

Coded orthogonal frequency-division multiplexing (OFDM)
has been chosen as the air interface for recent cellular and
wireless local area network (WLAN) systems by virtue of
its good performance, flexibility, and low implementation
complexity.

A number of channel estimation methods have been pro-
posed for OFDM. When pilot symbols are available on some
sub-carriers, initial estimates are easily obtained and can be
improved through frequency- and time-domain interpolation
[1] or according to the minimum mean square error (MMSE)
criterion [2]. Blind channel estimation methods, not relying on
the presence of pilot symbols, have also been proposed. For
instance, they take benefit from the cyclostationarity of the
OFDM signal [3]. However, all these algorithms have their
limitations: insufficient accuracy, low spectrum efficiency due
to pilot overhead, or high sensitivity to Doppler in case of
blind estimation.

As hardware capacity is continuously increasing, it becomes
more feasible to implement iterative receivers allowing for
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improvement of physical layer functions. Among these func-
tions, channel estimation especially benefits from data-aided
methods requiring a feedback from the channel decoder. The
iterative expectation-maximization (EM) estimation algorithm
[4] is particularly well suited for OFDM systems with low
pilot overhead. Instead of computing the maximum likelihood
channel estimate from the observations only, it makes use
of the so-calledcomplete dataκ, which are not observed
directly but only through incomplete data. Sinceκ is a random
variable, the log-likelihood can be averaged overκ knowing
the incomplete data and a current channel estimate. A new
channel estimate is then obtained by maximizing the average
log-likelihood, which results in the EM iterative structure.
The likelihood increases along EM iterations [4]. A classic
way (CL-EM) to choose the complete data isκ = (X,Y),
whereX is the transmitted signal andY is the observation
[5]. Classic EM estimation for OFDM with space-frequency
coding has been studied in [6]. In [7] and [8], for uncoded
OFDM, complete data is obtained by decomposing the noise
and observation components (NCD-EM). In [9], NCD-EM is
also applied to a coded single-carrier system.

In this paper, we derive CL-EM and NCD-EM algorithms
for coded OFDM systems and compare them from two aspects:
complexity and performance. The complexity of the EM
algorithm depends on two factors: the complexity in each
iteration and the rate of convergence of the EM algorithm.
In [4] and [10], the general rate of convergence of the
EM algorithm is analyzed with mathematical derivation and
graphical illustration respectively. Based on [4], we derive the
rates of convergence of CL-EM and NCD-EM for a coded
OFDM system. Together with the complexity in each iteration,
the overall complexity of the EM algorithm can be obtained.
Concerning performance, we compare CL-EM and NCD-EM
for a coded OFDM system in terms of mean square error
(MSE) and bit error rate (BER). In addition, we determine the
Cramér-Rao bound for this coded OFDM system, as an ideal
reference for MSE performance.

The rest of the paper is organized as follows. Section II
describes the coded OFDM system and introduces the EM
channel estimator. In section III, we develop the CL-EM and
NCD-EM algorithms for the coded OFDM system. In section
IV, we compare the two proposed EM algorithms in terms of
complexity per iteration and rate of convergence, and discuss
their overall complexities. Section V presents CRB for coded
OFDM. Section VI includes performance results, and finally,
some conclusions are drawn in section VII.
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II. SYSTEM DESCRIPTION

We consider a coded OFDM signal transmitted over a
single-input single-output (SISO) frequency-selective channel
as shown in Fig. 1.

An information binary sequenceS is encoded into a
coded sequenceC. The encoded bits are then interleaved
by a pseudo-random interleaver and modulated. After pilot
insertion, the obtained sequenceX = (X0, · · · , XN−1)

T is
processed by an inverse Fast Fourier transform (IFFT), which
provides the time-domain sequencex = (x0, · · · , xN−1)

T
=

U†X, where U is the normalizedN × N FFT matrix

with the (m, n) entry equal to
1√
N

e−
j2π(m−1)(n−1)

N (m, n =

1, 2, · · · , N ) and (·)† stands for transpose-conjugate. After
insertion of a cyclic prefix (CP) with lengthLCP, the transmit-
ted OFDM symbol isx

′

= (xN−LCP ,· · · ,xN−1, xT )
T. The

received sequence isy
′

=
(

y
′

0, · · · , yN+LCP−1

)T
with

y
′

k =

L−1
∑

l=0

hlx
′

k−l + nk, LCP ≤ k ≤ N + LCP− 1, (1)

where L is the number of taps in the channel,L 6 LCP,
h = (h0, · · · , hL−1)

T is the channel impulse response, andnk

is a complex Gaussian noise with zero mean and variance2σ2.
After CP removal, the received time domain sequencey =
(y0, · · · , yN−1)

T is processed by FFT. The received sequence
in the frequency domain isY = (Y0, · · · , YN−1)

T
= Uy. We

assume that the channel impulse response is constant over one
OFDM symbol. Finally, the well-known OFDM discrete-time
model is [11]

Y = diag(H)X + N, (2)

where N = (N0, · · · , NN−1)
T = Un has the same distri-

bution asn = (n0, · · · , nN−1)
T, H = (H0, · · · , HN−1)

T

represents the channel frequency-responseH = Ωh, where
the N × L matrix Ω is built from theL first columns ofU,
and diag(H) represents a diagonal matrix withHk as its(k, k)
entry.

An initial channel estimate is obtained from pilots in-
cluded in the sequenceY. Soft information produced by the
demodulator on coded bits is de-interleaved into sequence
Ĉ, which is processed by the decoder. After decoding,a
posterioriprobabilities are fed back to the EM-based estimator
which updates the channel estimate for next demodulation and
decoding. Thus, the soft information and the channel estimate
are improved along iterations.

III. EM-BASED CHANNEL ESTIMATION

A. Notations for the EM Algorithm

The EM algorithm provides a recursive solution to ML
estimation [4] [12] and it performs a two-step procedure as
shown in Fig. 2:

1) E-step: compute the auxiliary function
Q
(

h|h(i)
)

= Eκ

[

log p (κ |h) |Y,h(i)
]

;
2) M-step: update the parameters

h(i+1) = arg max
h

Q
(

h|h(i)
)

,

whereκ is called the complete data. It is possible to define the
complete data in different ways leading to different types of
EM algorithms. A classic definition is to chooseκ = (X,Y).
This is named classic EM (CL-EM). For superimposed signals,
it has been shown in [13] that the complete data can be chosen
by decomposing noise components into independent noise
processes. This is named noise component decomposition EM
(NCD-EM). NCD-EM has been utilized in some applications,
such as uncoded OFDM with single and multiple transmit
antennas (see [8] and [7] respectively) and coded single-
carrier transmission on fading channel with uncorrelated and
correlated paths (see [9] and [14] respectively).

B. CL-EM Channel Estimation

Here, we define the complete data as in the classic
method [5]:κ = (X,Y). X is called the missing data and
Y the incomplete data. So, the E-step can be re-written as

Q
(

h|h(i)
)

= EX

[

log p (X, Y |h) |Y,h(i)
]

. (3)

If all values ofX are equiprobable, the auxiliary function can
be written as

Q
(

h|h(i)
)

= EX

[

log p(Y |X, h) |Y,h(i)
]

=
∑

X

log p (Y |X, h) APP(i) (X) , (4)

whereAPP(i) (X) = P
(

X|Y,h(i)
)

is thea posterioriproba-
bility of X in the ith iteration.

In [15], we derived an EM algorithm by considering an
energy constraint, called EC-EM. However, we found that EC-
EM does not perform so well because of a rough estimation
of the energy constraint. Therefore, we focus here on the CL-
EM without energy constraint. In order to estimate the channel
impulse responseh, we re-write (2) as

Y = diag(X)Ωh + N. (5)

With the Gaussian noise assumption, givenX andh, we have
Y ∼ CN

(

diag(X)Ωh, 2σ2IN

)

, whereIN represents the unit
matrix of sizeN . Then, the auxiliary function can be written
as

Q
(

h|h(i)
)

= − 1

2σ2

∑

X

‖Y − diag(X)Ωh‖2 APP(i) (X)

−
∑

X

N log 2πσ2 APP(i) (X) . (6)

The new channel estimateh(i+1) is the value ofh satisfying
∂

∂h
Q
(

h|h(i)
)

= 0,

h(i+1) =
(

Ω†R
(i)∗
N×NΩ

)−1

Ω† ˜
diag(X)

(i)†
Y, (7)

where
˜

diag(X)
(i) is the N × N diagonal matrix of soft
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YĈ

S

Ŝ
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Fig. 1. Coded OFDM system model with the proposed EM based channel estimator. The initial
estimate is obtained from pilot symbols only, whereas the estimates in following iterations are obtained
from both pilot and data symbols.

Initial parameter

Compute the average

log−likelihood function

log−likelihood function

using the average

Compute the ML estimate

i = 1

E-step:

M-step:

i = i + 1

h
(1)

estimate ofh(i+1)

usingh
(i)

Fig. 2. Flowchart of the EM algorithm.

estimates ofX:

˜
diag(X)

(i)
,
∑

Xj

APP(i) (Xj) diag(Xj)

= diag

([

∑

m

APP(i) (X0 = αm)αm, · · · ,

∑

m

APP(i) (XN−1 = αm)αm

]T


 , (8)

whereαm (m = 0, · · · , M − 1) represents the set of possible
symbols in the mapping constellation,M represents the size
of the mapping constellation andAPP(i) (Xk = αm) is the a
posterioriprobability ofXk = αm in the ith iteration;R(i)

N×N

is a N × N matrix:

R
(i)
N×N =

˜
diag(X)

(i)T diag(X)
(i)∗

= diag

([

∑

m

APP(i) (X0 = αm) |αm|2 , · · · ,

∑

m

APP(i) (XN−1 = αm) |αm|2
]T


 . (9)

For a phase modulated system, all symbols have the same
energyE . Thus, (7) can be simplified into

h(i+1) =
1

EN
Ω† ˜diag(X)(i)†Y. (10)

C. NCD-EM Channel Estimation

In this section, the NCD-EM algorithm is derived with
the complete data chosen by decomposing the noise and
observation components. NCD-EM channel estimation for an
uncoded OFDM system has been introduced in [7] and the
NCD-EM algorithm for a coded OFDM system is derived here.

In order to estimate the channel impulse responseh, we
re-write (2) as:

Y = Ah + N =

L−1
∑

l=0

Alhl + N, (11)

whereA = diag(X)Ω, Al is thelth column of matrixA and
[A]k,l = ak,l. From (11), we get

Yk =
L−1
∑

l=0

ak,lhl + Nk, 0 ≤ k ≤ N − 1. (12)

The noise and observed data are decomposed as in [7]:

N =
L−1
∑

l=0

Nl, Y =
L−1
∑

l=0

(Alhl + Nl) =
L−1
∑

l=0

Zl, (13)

where Nl = (N0,l, · · · , NN−1,l)
T with a variance2σ2

l =

2βlσ
2, Zl = (Z0,l, · · · , ZN−1,l)

T andZl = Alhl + Nl. Here,

the noise variance factorsβl’s, which satisfy
L−1
∑

l=0

βl = 1, are

important parameters which control the rate of convergenceof
the NCD-EM algorithm [13]. We choose the complete data as
κ = (Z,A), whereZ = (Z0, · · · ,ZL−1), and the auxiliary
function for the NCD-EM can be written as

Q
(

h|h(i)
)

= Eκ

[

log p(κ |h) |Y,h(i)
]

=
∑

A

∫

Z

P
(

Z, A |Y,h(i)
)

log p (Z, A |h) dZ. (14)

With equiprobable transmitted symbols, the auxiliary function
becomes

Q
(

h|h(i)
)

=
∑

A

∫

Z

P
(

Z, A |Y,h(i)
)

log p (Z |A, h) dZ.

(15)

After some derivations given in Appendix A, we get
(16) at the bottom of the next page, whereak =
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TABLE 1
NUMBER OF COMPLEX MULTIPLICATIONS OFCL-EM AND NCD-EM IN ONE ITERATION (QUADRATURE AMPLITUDE MODULATION )

CL-EM NCD-EM
“

Ω
†
R

(i)∗
N×N

Ω

”−1
Ω

† ˜diag(X)(i)†Y N × (L2 + 2L + 1) +
4

3
L3 + L2

Tr (R(i)
N×N

)h(i) L

Ω† ˜diag (X)(i)†Y N × (L + 1)

Ω†R
(i)
N×N

Ωh(i) N × (2L + 1)

Total N × (L2 + 2L + 1) +
4

3
L3 + L2 N × (3L + 2) + L

(ak,0, · · · , ak,l, · · · , ak,L−1) is the kth row of the matrixA,
ςl is the lth component of vectorς and [9]

E
{

Zk,l|ak = ς,Y,h(i)
}

= h
(i)
l ςl + βl

(

Yk −
L−1
∑

l=0

h
(i)
l ςl

)

.

(17)

We chooseβl =
1

L
[9] [14] in our simulations, which provides

the best rate of convergence as it will be proved in the
next section. From (11),ak = XkΩk, whereΩk is the kth
row of the matrix Ω. Hence, thea posteriori conditional
probability in (16) can be written as P

(

ak = ς|Y,h(i)
)

=
P
(

Xk = αm|Y,h(i)
)

. Thea posterioriconditional probability
is produced by the decoder. Taking the partial derivative of
(16) with respect to each channel coefficienthl and making the
derivative equal to zero, the new channel coefficient estimates
h

(i+1)
l may be expressed as in (18). For phase modulated

systems, (18) can be simplified into (19) at the bottom of
the page.

IV. COMPLEXITY AND CONVERGENCERATE COMPARISON

In this section, the complexity of CL-EM and NCD-EM are
analyzed and compared.

A. Complexity per Iteration

In order to compare the complexity of CL-EM and NCD-
EM in one iteration, we re-write (18) in a matrix form as

in (20) at the bottom of the next page. For phase modulated
system, (20) becomes:

h(i+1) = (1 − 1

L
)h(i) +

1

ENL
Ω† ˜

diag(X)
(i)†

Y. (21)

We check the number of complex multiplications in (7), (20),
(10) and (21) as shown in Table 1 [16] and Table 2. For QAM
modulation, CL-EM in most cases needs more computations
than NCD-EM in one iteration, and the ratio of numbers of
complex multiplications is (N ≫ L3 andL ≫ 1)

N × (L2 + 2L + 1) +
4

3
L3 + L2

N × (3L + 2) + L
≈ L2 + 2L + 1

3L + 2
≈ L

3
.

(22)
For phase modulated system, CL-EM needsL computations
less than NCD-EM in one iteration.

TABLE 2
NUMBER OF COMPLEX MULTIPLICATIONS OFCL-EM AND NCD-EM IN

ONE ITERATION (PHASE MODULATION)

CL-EM NCD-EM
1

EN
Ω

† ˜diag (X)(i)†Y N × (L + 1) + L

(1 −
1

L
)h(i) L

1

ENL
Ω

† ˜diag (X)(i)†Y N × (L + 1) + L

Total N × (L + 1) + L N × (L + 1) + 2L

Q
(

h|h(i)
)

= − 1

2σ2

L−1
∑

l=0

|hl|2
N−1
∑

k=0

∑

ς

|ςl|2P
(

ak = ς|Y,h(i)
)

+
1

σ2

L−1
∑

l=0

N−1
∑

k=0

ℜe

{

h∗
l

∑

ς

ς∗l E
{

Zk,l|ak = ς,Y,h(i)
}

P
(

ak = ς|Y,h(i)
)

}

. (16)

h
(i+1)
l =

N−1
∑

k=0

∑

αm

α∗
mej2π

(l−1)(k−1)
N E

{

Zk,l|Xk = αm,Y,h(i)
}

P
(

Xk = αm|Y,h(i)
)

N−1
∑

k=0

∑

αm

|αm|2P
(

Xk = αm|Y,h(i)
)

. (18)

h
(i+1)
l =

1

EN

N−1
∑

k=0

∑

αm

α∗
mej2π

(l−1)(k−1)
N E

{

Zk,l|Xk = αm,Y,h(i)
}

P
(

Xk = αm|Y,h(i)
)

(19)
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The reader should notice that the modulation size does not
appear in Tables 1 and 2, because expectations based ona
posteriori probability, which are common operations to both
estimation methods, are not taken into account.

B. Analysis of the Convergence Rate

From [4] and [17], we know that the rate of convergence
of the EM algorithm can be evaluated as:

DM (hc) = D11H (hc|hc)
[

D11Q (hc|hc)
]−1

, (23)

wherehc represents the limit point of the converging sequence
hi,

D11H (hc|hc) =

Eκ

{

∂

∂hc
log p (κ|Y,hc)

[

∂

∂hc
log p (κ|Y,hc)

]†

|Y,hc

}

,

(24)

and

D11Q (hc|hc) =

Eκ

{

∂

∂hc
log p (κ|hc)

[

∂

∂hc
log p (κ|hc)

]†

|Y,hc

}

. (25)

The largest eigenvalue ofDM (hc) gives the rate of conver-
gence for the algorithm.

Recall the relationship between the Fisher information and
the rate of convergence of the EM algorithm [4]:
a) D11H (hc|hc) is the Fisher information in the unobserved
part of κ abouthc;
b) D11Q (hc|hc) is the Fisher information in the complete
dataκ abouthc, andD11Q (hc|hc) can be written as:

D11Q (hc|hc) = D11H (hc|hc) + D2L (hc) , (26)

where L (hc) = logp(Y|hc); D2L (hc) =

EY

{

∂

∂hc
L (hc)

[

∂

∂hc
L (hc)

]†
}

is a measure of the

information in the incomplete dataY.
Therefore, the rate of convergence for the EM algorithm in

(23) can be interpreted as:

Rate of Convergence=
Lost information due to unobserved data

All information in complete data
. (27)

Thus, a smaller rate of convergence implies that less informa-
tion is lost and the EM algorithm converges faster.

1) CL-EM Algorithm: For CL-EM, the complete data is
κ = (X,Y). From (24), we get

D11H (hc|hc) = EX

{

∂

∂hc
log p (X,Y|Y,hc)

[

∂

∂hc
log p (X,Y|Y,hc)

]†

|Y,hc

}

. (28)

With the derivations in Appendix B assuming high SNR, we
get

D11H (hc|hc) ≈ 0. (29)

From (25) and the complete data of CL-EM,

D11Q (hc|hc) = EX

{

∂

∂hc
log p (X,Y|hc)

[

∂

∂hc
log p (X,Y|hc)

]†
∣

∣

∣

∣

∣

Y,hc

}

. (30)

Considering the equiprobability of transmitted data, we re-
write (30) as (31), whereRN × N is always greater than 0.

Therefore, at high SNR, CL-EM algorithm always leads to

DM (hc) ≈ 0. (32)

With this rate of convergence close to zero, we can expect
that CL-EM should be already very close to its fix point at
the second iteration, i.e., after the first one based on pilots.

2) NCD-EM Algorithm: For NCD-EM, the complete data
is κ = (Z,A). From (24), we have

D11H (hc|hc) = E(Z,A)

{

∂

∂hc
log p (Z,A|Y,hc)

[

∂

∂hc
log p (Z,A|Y,hc)

]†
∣

∣

∣

∣

∣

Y,hc

}

, (33)

With the derivations in Appendix C, whereβ =
[β0, · · · , βL−1]

T, E is the average energy of transmitted sym-
bols andIL represents the identity matrix of sizeL, we have,
assuming high SNR,

D11H (hc|hc) ≈ 1

2σ2
NE

[

diag(β)
−1 − IL

]

. (34)

From (25),

D11Q (hc|hc) = E(Z,A)

{

∂

∂hc
log p (Z,A|hc)

[

∂

∂hc
log p (Z,A|hc)

]†

|Y,hc

}

. (35)

h(i+1) =
1

Tr(R(i)
N×N)

[

Tr(R(i)
N×N)h(i) +

1

L
Ω† ˜

diag(X)
(i)†

Y − 1

L
Ω†R

(i)
N×NΩh(i)

]

(20)

1

(2σ2)
2 EX

{

ΩTdiag(X)
T [

Y∗ − diag(X)
∗
Ω∗hc∗

] [

Y∗ − diag(X)
∗
Ω∗hc∗

]†
diag(X)

∗
Ω∗
∣

∣

∣Y,hc
}

=
1

2σ2

∑

Xj

APP(i) (Xj)ΩTdiag(Xj)
T diag(Xj)

∗
Ω∗ =

1

2σ2
ΩTRN × NΩ∗ (31)
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Using logp (Z,A|hc) = log p (Z|A,hc)+ log p (A) and (C-
4), we get

D11Q (hc|hc) =
1

2σ2
NEdiag(β)

−1
. (36)

Substituting (34) and (36) into (23), we obtainDM (hc) =
IL − diag(β). The eigenvalues ofDM (hc) are1− βl, 0 ≤
l ≤ L − 1, which explains whyβl =

1

L
is the best choice

as suggested by simulation results in [9] and [14]: the largest
eigenvalue is minimized and the best NCD-EM convergence
is achieved. With this choice,DM (hc) can be written as

DM (hc) = diag

(

[

1 − 1

L
, · · · , 1 − 1

L

]T
)

and we see the

relationship between the rate of convergence and the number
of taps in the channel: the more taps there are in the channel,
the slower the NCD-EM converges.

C. Overall complexity

Based on sections IV-A and IV-B, we can analyze the
overall complexity of the CL-EM and the NCD-EM. Since the

best rate of convergence of NCD-EM is1 − 1

L
, we assume

that the number of iterations for convergence isL. Thus, the
total number of complex multiplications for convergence is
L2 + N(3L2 + 2L). However, the numerical results in Fig.
6 and Fig. 7 will show that the actual number of iterations
of NCD-EM is larger thanL. On the other hand, the rate
of convergence of CL-EM is approximately 0. Therefore, the
total number of complex multiplications for convergence is
approximately equal to that of a single iteration.

First, we check the difference D(L, N) between the number
of complex multiplications in NCD-EM denoted byNNCDoverall

and the number of complex multiplications in CL-EM denoted
by NCLoverall. With QAM modulations:

DQAM(L, N) = NNCDoverall − NCLoverall = N
(

2L2 − 1
)

− 4

3
L3.

(37)

Since, forN >
4

3
, DQAM(1, N) > 0 and, for1 ≤ L < N ,

∂

∂L
DQAM(L, N) > 0, DQAM(L, N) is always greater than zero

with N >
4

3
and1 ≤ L < N which is always true in practice.

Especially, whenN ≫ L3 andL ≫ 1, together with (22), the
ratio of overall complexities can be expressed as

NCLoverall

NNCDoverall

≈ L

3 × L
≈ 1

3
. (38)

Since the assumption ofL iterations underestimates the num-
ber of iterations of NCD-EM, we can expect a smaller ratio in
practice. Therefore, with a QAM modulation, even though CL-
EM needs more computations than NCD-EM in one iteration,
CL-EM has a lower overall complexity thanks to the almost
zero rate of convergence.

For phase modulated systems, since CL-EM needs less
computations in one iteration and converges faster than NCD-
EM, it is obvious that CL-EM has a lower overall complexity

than NCD-EM. With phase modulated systems, the ratio of
overall complexities can be expressed as (N ≫ L2)

NCLoverall

NNCDoverall

=
N(L + 1) + L

N(L2 + L) + 2L2
≈ 1

L
. (39)

V. CRAMER-RAO BOUND FOR CODED OFDM

The Cramér-Rao Bound (CRB) provides a lower bound
for MSE to evaluate how good an unbiased estimator can
be [18] [17]. Besides, modified CRB (MCRB) is a looser
bound assuming perfect knowledge of the transmitted sig-
nal [19] [20]. Its computation is less complex. The CRB for
the uncoded OFDM system and the MCRB for the OFDM
system have been given in [7]. Here, we derive the CRB for
a coded OFDM system. For the vector parameterh [17]:

CRB (hl) = I−1
ll (h) , l = 0, · · · , L − 1 (40)

whereI (h) is the Fisher information matrix:

I (h) = EY

{

∂

∂h
log p (Y|h)

(

∂

∂h
log p (Y|h)

)†
}

. (41)

Making use of (B-8), we have

∂

∂h
log p (Y|h) = − 1

2σ2
ΩT ˜

diag(X)
(i)T

Y∗

+
1

2σ2
ΩT R

(i)
N×NΩ∗h∗. (42)

Substituting (42) into (41), we obtain the Fisher information
matrix. The CRB for a single parameter isI−1

ii (h) and the
overall CRB for all parameters is

CRB (h) =

L−1
∑

l=0

CRB (hl) = Tr
(

I−1 (h)
)

. (43)

In our simulations, the Fisher information is obtained fromthe
average over a large number of OFDM symbols and the final
CRB is obtained by substituting the Fisher information into
(43).

VI. N UMERICAL RESULTS

In order to demonstrate the validity and the effectiveness
of the proposed EM-based channel estimation algorithms,
the coded OFDM system introduced in section II has been
simulated. A 6-tap rectangular Rayleigh ISI channel has been
considered. The entire channel bandwidth is divided into 128
sub-carriers and the cyclic prefix length is 16 samples. A
1/2-rate(133, 171)8 nonsystematic nonrecursive convolutional
code and a pseudo-random interleaver of size 480 are used
in simulations. The modulation scheme is 16-QAM. Pilot
symbols are uniformly inserted into every OFDM symbol.

A. Craḿer-Rao Bound

Figure 3 shows CRBs for OFDM systems without coding
and with two different coding schemes: the first code is the
rate 1/2 code mentioned above with minimum distance 10; the
second code is a rate 1/5 convolutional code with minimum
distance 25. Improving the code performance at a given signal-
to-noise ratio (Es/N0) results in a lower CRB. For high
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Es/N0, all CRBs converge to the MCRB as APP information
from the decoder becomes perfect; for lowEs/N0, CRBs
for the coded systems converge to the CRB for the uncoded
system as decoding does not bring improvement anymore.
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Fig. 4. Mean square error (MSE) performances for CL-EM and NCD-EM
in coded OFDM system. The number of pilot symbols is 8. Modulation is
16-QAM. The channel has 6 taps.

B. CL-EM versus NCD-EM

We also compare CL-EM and NCD-EM. From Fig. 4,
we see that NCD-EM has slower convergence than CL-EM,
it does not achieve CRB before the 18-th iteration. Similar
behavior is observed in Fig. 5 for BER performance, whereas
CL-EM approaches performance with perfect channel state
information (CSI) after 4 iterations only.

C. Rate of Convergence and Complexity

In order to show the convergence of CL-EM and NCD-EM
more clearly, we draw the ratio of estimate differences in Fig.
6 and Fig. 7, where

ratio of estimate differences=
‖h(i+1) − h‖
‖h(i) − h‖ . (44)
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NCD-EM iter 18

Perfect CSI

Fig. 5. Bit error rate (BER) performances for CL-EM and NCD-EM in coded
OFDM system. The number of pilot symbols is 8. Modulation is 16-QAM.
The channel has 6 taps.
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Fig. 6. Ratio of estimate differences for CL-EM and NCD-EM incoded
OFDM at Es/N0=10dB. The number of pilot symbols is 16. Modulation is
16-QAM.

A ratio of estimate differences equal to 1 means that EM
algorithm has converged.

In Fig. 6, at moderate SNR (Es/N0 = 10dB), we ob-
serve that CL-EM needs a dozen of iterations to converge;
however, it is at least twice faster than NCD-EM under
similar conditions. Furthermore, with different numbers of
taps in the channel, CL-EM always converges with almost the
same number of iterations. However, NCD-EM convergence
speed depends on the number of channel taps. This result is
consistent with the theoretical analysis.

In Fig. 7, at high SNR (Es/N0 = 20dB), we can see that
CL-EM always converges from the second iteration (the first
iteration includes a pilot-based estimation). As expectedfrom
(32), the rate of convergence of CL-EM is almost zero for
high SNR.

The theoretical analysis of convergence and complexity
accomplished in section IV-C assumes high SNR. Good results
are also measured at low SNR as can be seen in Fig. 6. For
9 taps, the ratio of number of iterations between CL-EM and
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16-QAM.

NCD-EM is about 20% and the complexity ratio is about 69%.
These ratios are 25% and 61% respectively for a channel with
6 taps.

According to section IV-C, the complexity of CL-EM should
be about 41% of NCD-EM. This ratio is obtained with the
assumption that NCD-EM converges afterL iterations which
is underestimated. When considering MSE performance, in
Fig. 4, NCD-EM achieves CRB after3L iterations. Thus,
the ratio of overall complexities between CL-EM and NCD-
EM is actually 14%. Concerning BER performance, as shown
in Fig. 5, NCD-EM needs 18 iterations to achieve the same
performance as CL-EM with only 4 iterations and the ratio of
overall complexities is approximately 55%. However, in the
iterative OFDM receiver, the soft demapping and decoding
procedures are also included in every iteration. If we consider
these additional processes, the iterative receiver with CL-EM
channel estimator will be much less complex than that with
NCD-EM channel estimator. Therefore, CL-EM algorithm has
a better performance-complexity trade-off.

VII. C ONCLUSIONS

We have derived EM based iterative algorithms for the
estimation of the channel impulse response in a coded OFDM
system and compared the CL-EM algorithm using the classic
complete data with the NCD-EM algorithm where the com-
plete data is obtained via decomposing noise and observation
components. The CRB for a coded OFDM system has also
been established as a lower bound for MSE performance.
Theoretical analysis shows that the convergence rate of CL-
EM is almost zero at high SNR, while that of NCD-EM
depends on the number of channel taps and the choice of
noise variance factors. Taking into account the complexityper
iteration, CL-EM is less complex than NCD-EM for all linear
modulations at the same error rate performance. Thus, CL-EM
is an excellent OFDM channel estimator with a reasonable
complexity.
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APPENDIX A
DERIVATION OF (16)

Using (13), we get

p(Z|A,h) =
1

(2πσ2)
N

exp

{

− 1

2σ2

L−1
∑

l=0

‖Zl − Alhl‖2

}

(A-1)
and

logp (Z|A,h) = − 1

2σ2

L−1
∑

l=0

‖Zl − Alhl‖2 − γ. (A-2)

Using (15) and (A-2) and neglecting the constant numberγ
which will not impact the subsequent partial derivative, weget
the auxiliary function of NCD-EM:

Q
(

h|h(i)
)

=

∑

A

∫

Z

− 1

2σ2

L−1
∑

l=0

‖Zl − Alhl‖2 P
(

Z, A |Y,h(i)
)

dZ.

(A-3)

In (A-3),

L−1
∑

l=0

‖Zl − Alhl‖2 =

L−1
∑

l=0

N−1
∑

k=0

|Zk,l − ak,lhl|2

=
L−1
∑

l=0

N−1
∑

k=0

|Zk,l|2 − 2ℜe
{

Zk,la
∗
k,lh

∗
l

}

+ |ak,lhl|2. (A-4)

Substituting (A-4) into (A-3), we get

Q
(

h|h(i)
)

= A + B + C, (A-5)

where

A = − 1

2σ2

∑

A

∫

Z

L−1
∑

l=0

N−1
∑

k=0

|Zk,l|2 P
(

Z, A |Y,h(i)
)

dZ,

(A-6a)

B =
1

2σ2

∑

A

∫

Z

L−1
∑

l=0

N−1
∑

k=0

2ℜe
{

Zk,la
∗
k,lh

∗
l

}

P
(

Z, A |Y,h(i)
)

dZ, (A-6b)

C = − 1

2σ2

∑

A

∫

Z

L−1
∑

l=0

N−1
∑

k=0

|ak,lhl|2 P
(

Z, A |Y,h(i)
)

dZ.

(A-6c)

Since the channel parameterh is not contained in (A-6a),
∂A
∂h

= 0; the second item (A-6b) can be transformed to (A-
7), where

E
{

Zk,l|A,Y,h(i)
}

=

∫

Z

Zk,l P
(

Z |A,Y,h(i)
)

dZ.

(A-8)
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From (12) and (13),Zk,l andak,l only depend on thekth row
of A, denoted asak = (ak,0, · · · , ak,l, · · · , ak,L−1). Thus,
(A-7) can be written as

B =
1

2σ2

L−1
∑

l=0

N−1
∑

k=0

2ℜe

{

h∗
l

∑

ς

E
{

Zk,l|ak = ς,Y,h(i)
}

ς∗l

P
(

ak = ς |Y,h(i)
)}

, (A-9)

where the vectorς represents a possible value of vectorak

and ςl is the lth component ofς. With (12), (13) and (A-8),
we get (17). Furthermore, with the same notations, the item
(A-5) can be written as (A-10). Substituting (A-9) and (A-10)
into (A-6), we get the auxiliary function for NCD-EM in (16).

APPENDIX B
DERIVATION OF (29)

In (28),

log p (X,Y|Y,hc) = log p (X|Y,hc)

= log p (X,Y|hc) − log p (Y|hc) . (B-1)

In (B-1), considering the independence between the equiprob-
able transmitted data and the channel parameters, we have

log p (X,Y|Y,hc) = log
1

M
p (Y|X,hc) − log p (Y|hc) .

(B-2)

Substituting (B-2) into (28), we obtain (B-3). For the first
item in (B-3), the expectation can be written as

EX

{

∥

∥

∥

∥

∂

∂hc
log p (Y|X,hc)

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

Y,hc

}

=

∑

Xj

P(Xj |Y,hc)

∥

∥

∥

∥

∂

∂hc
log p (Y|Xj ,h

c)

∥

∥

∥

∥

2

, (B-4)

where j enumerates all possible symbol sequencesXj of
lengthN . For coded transmission, the log-likelihood function
log p (Y|hc) can be written as [21]:

log p (Y|hc) = log
∑

Xj

P(Xj) p (Y|Xj , hc) . (B-5)

Differentiating (B-5) yields

∂

∂hc
log p (Y|hc) =

∑

Xj

P(Xj) p (Y|Xj , hc)

p (Y, hc)

∂

∂hc
log p (Y|Xj , hc) . (B-6)

Making use of Bayes’ rule, we obtain

P(Xj) p (Y|Xj , hc)

p (Y, h)
= P(Xj |Y, hc) . (B-7)

With (B-6), we get

∂

∂hc
log p (Y|hc) =

∑

Xj

P(Xj |Y,hc)
∂

∂hc
log p (Y|Xj ,h

c) .

(B-8)

Using (B-8) yields

EX

{

∥

∥

∥

∥

∂

∂hc
log p (Y|hc)

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

Y,hc

}

=

∥

∥

∥

∥

∥

∥

∑

Xj

P(Xj |Y,hc)
∂

∂hc
log p (Y|Xj ,h

c)

∥

∥

∥

∥

∥

∥

2

(B-9)

and (B-10). With perfect APP (high SNR),

∑

Xj

P(Xj |Y,hc)

∥

∥

∥

∥

∂

∂hc
log p (Y|Xj ,h

c)

∥

∥

∥

∥

2

≈

∥

∥

∥

∥

∥

∥

∑

Xj

P(Xj |Y,hc)
∂

∂hc
log p (Y|Xj ,h

c)

∥

∥

∥

∥

∥

∥

2

. (B-11)

Substituting (B-4), (B-9) and (B-10) into (B-3) and using (B-
11), we get (29).

APPENDIX C
DERIVATION OF (34)

In (33),

log p (Z,A|Y,hc) = log p (Z|A,hc) − log p (Y|hc)

+ log p (Y|Z,A,hc) + log p (A) . (C-1)

B =
1

2σ2

L−1
∑

l=0

N−1
∑

k=0

2ℜe

{

h∗
l

∑

A

∫

Z

Zk,la
∗
k,l P

(

Z |A,Y,h(i)
)

P
(

A |Y,h(i)
)

dZ

}

=
1

2σ2

L−1
∑

l=0

N−1
∑

k=0

2ℜe

{

h∗
l

∑

A

E
{

Zk,l|A,Y,h(i)
}

a∗
k,l P

(

A |Y,h(i)
)

}

(A-7)

C = − 1

2σ2

L−1
∑

l=0

N−1
∑

k=0

∑

A

∫

Z

P
(

Z |A,Y,h(i)
)

|ak,lhl|2P
(

A |Y,h(i)
)

dZ

= − 1

2σ2

L−1
∑

l=0

N−1
∑

k=0

∑

A

|ak,lhl|2P
(

A |Y,h(i)
)

= − 1

2σ2

L−1
∑

l=0

|hl|2
N−1
∑

k=0

∑

ς

|ςl|2P
(

ak = ς|Y,h(i)
)

(A-10)
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With (13), Y is completely known from Z, thus
∂

∂hc
p (Y|Z,A,hc) = 0; since p (A) does not depend

on hc, it will not impact the subsequent partial derivative.
Therefore, we get (C-2). Using (12) and (13), we get

p (Z|A,hc) ∝ exp

{

− 1

2σ2

L−1
∑

l=0

1

βl

‖Zl − Alh
c
l ‖2

}

. (C-3)

Thus,

∂

∂hc
log p (Z|A,hc)

=
1

2σ2

[

1

β0
(Z0 − A0h

c
0)

†
A0, · · · ,

1

βL−1

(

ZL−1 − AL−1h
c
L−1

)†
AL−1

]T

=
1

2σ2

[

1

β0
N

c †
0 A0, · · · ,

1

βL−1
N

c †
L−1AL−1

]T

. (C-4)

Using (B-8), we also have (C-5), whereAj = Ωdiag(Xj).
Substituting (C-4) and (C-5) into (C-2) and considering the

perfect APP (high SNR), we get

E(Z,A)

{

∥

∥

∥

∥

∂

∂hc
log p (Z|A,hc)

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

Y,hc

}

=

1

2σ2
NEdiag(β)

−1
, (C-6)

E(Z,A)

{

∥

∥

∥

∥

∂

∂hc
log p (Y|hc)

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

Y,hc

}

=
1

2σ2
NEIL,

(C-7)

and (C-8). Substituting (C-6), (C-7) and (C-8) into (C-2), we
get (34).
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D11H (hc|hc) = EX

{

∥

∥

∥

∥

∂

∂hc
log p (Y|X,hc)

∥

∥

∥

∥

2
∣

∣

∣

∣
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+ EX

{
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∥
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∂

∂hc
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∥
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2
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∣

∣
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}
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{

EX
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∂

∂hc
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[

∂

∂hc
log p (Y|hc)

]†
∣

∣

∣

∣

∣

Y,hc

}}
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2ℜe

{

EX

{

∂

∂hc
log p (Y|X,hc)

[

∂

∂hc
log p (Y|hc)

]†
∣

∣

∣

∣

∣

Y,hc
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= 2ℜe















∑

Xj

P(Xj |Y,hc)
∂

∂hc
log p (Y|Xj ,h

c)





†

∑

Xj

P(Xj |Y,hc)
∂

∂hc
log p (Y|Xj ,h

c)











= 2

∥

∥

∥

∥

∥

∥

∑

Xj

P(Xj |Y,hc)
∂

∂hc
log p (Y|Xj ,h

c)

∥

∥

∥

∥

∥

∥

2

. (B-10)

D11H (hc|hc) = E(Z,A)

{

∥

∥

∥

∥

∂

∂hc
log p (Z|A,hc)

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

Y,hc

}

+ E(Z,A)

{

∥

∥

∥

∥

∂

∂hc
log p (Y|hc)

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

Y,hc

}

− 2ℜe

{

E(Z,A)

{

∂

∂hc
log p (Z|A,hc)

[

∂

∂hc
log p (Y|hc)

]†
∣

∣

∣

∣

∣

Y,hc

}}

(C-2)

∂

∂hc
log p (Y|hc) =

1

2σ2

∑

Xj

P(Xj |Y,hc)ΩTdiag(Xj)
T [

Y∗ − diag(Xj)
∗
Ω∗hc∗

]

=
1

2σ2

∑

Aj

P(Aj |Y,hc)
(

Nc †Aj

)T
=

1

2σ2

∑

Aj

P(Aj |Y,hc)
[

Nc †Aj,0, · · · ,Nc †Aj,L−1

]T
(C-5)

2ℜe

{

E(Z,A)

{

∂

∂hc
log p (Z|A,hc)

[

∂

∂hc
log p (Y|hc)

]†
∣

∣

∣

∣

∣
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}}
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