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Abstract—Expectation-maximization (EM) based iterative al- improvement of physical layer functions. Among these func-
gorithms are investigated in order to estimate the impulse tions, channel estimation especially benefits from dadachi
response of a frequency-selective multipath channel in a ded  athods requiring a feedback from the channel decoder. The

OFDM system. Two ways of choosing the EM complete data . . h o . .
are compared: a complete data built from observations and iterative expectation-maximization (EM) estimation aigum

transmitted symbols (CL-EM) and a complete data chosen by [4] is particularly well suited for OFDM systems with low
decomposing noise and observation components (NCD-EM). Bo  pilot overhead. Instead of computing the maximum likelitioo

CL-EM and NCD-EM algorithms are derived for a coded OFDM  channel estimate from the observations only, it makes use
system. The rate of convergence of both EM algorithms is of the so-calledcomplete datas, which are not observed

theoretically determined. It is found that the rate of convergence directly but onlv th hi lete data. Sinei d
of CL-EM is independent from the number of channel taps at irectly butonly through incomplete data. SInces a random

high signal-to-noise ratio (SNR), while that of NCD-EM varies Variable, the log-likelihood can be averaged oxeknowing
with the number of taps. It is shown that CL-EM converges in the incomplete data and a current channel estimate. A new

a few iterations. Furthermore, considering the complexityper channel estimate is then obtained by maximizing the average
iteration, CL-EM has a lower complexity than its counterpart. |4 jikelihood, which results in the EM iterative structur

We also establish a Craner-Rao bound (CRB) for coded OFDM - . . . .
transmission. Simulation results show that CL-EM has a good The likelihood increases along EM iterations [4]. A classic

performance-complexity trade-off and it achieves the CRB. way (CL-EM) to choose the complete dataxis= (X,Y),
L . where X is the transmitted signal an¥ is the observation
Index Terms—Orthogonal Frequency-Division Multiplexing,

Expectation Maximization, Channel Estimation, Rate of Con [5]- _Classm EM estlme.ltlon. for OFDM with space-frequency
vergence, Cranér-Rao Bound. coding has been studied in [6]. In [7] and [8], for uncoded
OFDM, complete data is obtained by decomposing the noise
and observation components (NCD-EM). In [9], NCD-EM is
I. INTRODUCTION also applied to a coded single-carrier system.

Coded orthogonal frequency-division multiplexing (OFDM) | this paper, we derive CL-EM and NCD-EM algorithms

has been chosen as the air interface for recent cellular %Pcoded OFDM systems and compare them from two aspects:
yvireless local area network_ (,\_NLAN) systems by virtue_ 0F:omplexity and performance. The complexity of the EM
its good. performance, flexibility, and low |mpIementat|o%|gorithm depends on two factors: the complexity in each
complexity. o iteration and the rate of convergence of the EM algorithm.
A number of channel e_stlmat|on methods have been prgr [4] and [10], the general rate of convergence of the
posed for OFDM. When pilot symbols are available on somg\ aigorithm is analyzed with mathematical derivation and
sub-carriers, initial estimates are easily obtained amdl® g aphical illustration respectively. Based on [4], we derthe
improved through frequency- and time-domain interpoRatiQaies of convergence of CL-EM and NCD-EM for a coded
[1] or according to the minimum mean square error (MMSE}rpv system. Together with the complexity in each iteration
criterion [2]. Blind channel estimation methods, not ralyon - the gverall complexity of the EM algorithm can be obtained.
the presence of pilot symbols, have also been proposed. Banerning performance, we compare CL-EM and NCD-EM
instance, they take benefit from the cyclostationarity & thq, 5 coded OFDM system in terms of mean square error
OFDM signal [3]. However, all these algorithms have theifisg) and bit error rate (BER). In addition, we determine the
limitations: insufficient accuracy, low spectrum efficigrdue cramér-Rao bound for this coded OFDM system, as an ideal
to pilot overhead, or high sensitivity to Doppler in case Qfsference for MSE performance.
blind estimation.
As hardware capacity is continuously increasing, it be®me Tne rest of the paper is organized as follows. Section II
; channel estimator. In section Ill, we develop the CL-EM and
* Telecom ParisTecEcole Nationale Supérieure des Télecommunicationf\CD-EM algorithms for the coded OFDM system. In section
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e versity atQatar, X »oona QaaOFDM. Section VI includes performance results, and finally,
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[I. SYSTEM DESCRIPTION wherex is called the complete data. It is possible to define the
We consider a coded OFDM signal transmitted over %pmplete data in different ways leading to different typés o

single-input single-output (SISO) frequency-selectinarmel =M @lgorithms. A classic definition is to choose= (X, Y).
as shown in Fig. 1. This is named classic EM (CL-EM). For superimposed signals,

An information binary sequencé is encoded into a it has been shown in [13] that the complete data can be chosen

coded sequenc€. The encoded bits are then interleaveHy decomposi_ng_ noise com_ponents into independeqt_ noise
by a pseudo-random interleaver and modulated. After pil focesses. This is named noise component decomposition EM
insertion, the obtained sequende — (Xo,---, Xn_1)" is NCD-EM). NCD-EM has been utilized in some applications,

processed by an inverse Fast Fourier transform (IFFTT),IWhiéLICh as uncoded OFDM with singl_e and multiple tran_smit
provides the time-domain sequenge= (o, - ,en_1) = antennas (see [8] and [7] respectively) and coded single-

U'X. where U is the normalizedN x N EET matrix Carrier transmission on fading channel with uncorrelated a

. 1 2 (m—1)(n—1 correlated paths (see [9] and [14] respectively).
with the ¢n,n) entry equal to——e— "% (m,n = P (see [9] [14] resp y)
VN
1,2,---,N) and (-)T stands for transpose-conjugate. After o
insertion of a cyclic prefix (CP) with lengthcp, the transmit- B. CL-EM Channel Estimation

i l— DR T T . . .
ted OFDM symbol isx' = (z¥-Lcp , aN-1, X ) The  pore e define the complete data as in the classic

received sequence is = (yg, e ayN+ch—1) with method [5]:x = (X,Y). X is called the missing data and
Y the incomplete data. So, the E-step can be re-written as

L—1
Yy = Z hxy_; +nk, Lep<k<N+Lcp—1, (1) Q (hlh(i)) — Ex {bg p(X, Y |h) |Y,h(i)} . 3)
=0
where L is the number of taps in the channdl, < Lep,  If all values of X are equiprobable, the auxiliary function can
h = (hg,--- ,hr—1) isthe channelimpulse response, and pe written as
is a complex Gaussian noise with zero mean and variamée
After CP removal, the received time domain sequepce: Q <h|h(i)) — Ex [1Og p(Y X, h) |Y,h(i)}
(yo, -+, yN,l)T is processed by FFT. The received sequence ,
in the frequency domain i¥ = (Yp, -, Yy_1)' = Uy. We = log p(Y|X, h) APP? (X),  (4)
X

assume that the channel impulse response is constant ayer on
OFDM symbol. Finally, the well-known OFDM discrete-time

model is [11] vv_hereAPP(f) (X) = P(X|Y,h?) is thea posterioriproba-
Y — diag(H) X + N, @) bility of X in the z'Fh iteration. . o
In [15], we derived an EM algorithm by considering an
whereN = (Ng,--- ,NN_l)T = Un has the same distri- energy constraint, called EC-EM. However, we found that EC-
bution asn = (ng,--- ,nN_l)T, H = (Hy,- - ,HN_l)T EM does not perform so well because of a rough estimation

represents the channel frequency-respdise- h, where of the energy constraint. Therefore, we focus here on the CL-
the N x L matrix © is built from the L first columns ofU, EM without energy constraint. In order to estimate the clehnn
and diag H) represents a diagonal matrix withy, as its(k, k) impulse responsh, we re-write (2) as
entry.

An initial channel estimate is obtained from pilots in- Y = diag(X) @h + N. (5)
cluded in the sequenc¥. Soft information produced by the
demodulator on coded bits is de-interleaved into sequendéth the Gaussian noise assumption, givérandh, we have
¢, which is processed by the decoder. After decodiag, Y ~ CN (diag(X) ©2h, 20*1y), wherel v represents the unit
posterioriprobabilities are fed back to the EM-based estimatépatrix of sizeN. Then, the auxiliary function can be written
which updates the channel estimate for next demodulatidn a&f
decoding. Thus, the soft information and the channel estima . 1 _
are improved along iterations. Q (hlh(’)) == 53 Z Y — diag(X) Qh||> APP?) (X)

X

lIl. EM-BASED CHANNEL ESTIMATION — Y N log 20 APPY (X) . (6)
A. Notations for the EM Algorithm x
The EM algorithm provides a recursive solution to MLThe new channel estimate’*) is the value ofh satisfying
estimation [4] [12] and it performs a two-step procedure Q(h|h("')) =0,
shown in Fig. 2: oh

1) E-step: compute the auxiliary function ; (i) -1 _ (i)t
Q (h|h(i)) =E, [log p(n |h) |Y, h(i)}; h( +1) _ (QTRNXNQ) QTd|ag(X) Y, 7

2) M-step: update the parameters
h(+D = arg ml_?xQ (h|h(i)),

where diag(X)(i) is the N x N diagonal matrix of soft
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Fig. 1. Coded OFDM system model with the proposed EM basedrngaestimator. The initial Fig. 2. Flowchart of the EM algorithm.
estimate is obtained from pilot symbols only, whereas thieneses in following iterations are obtained
from both pilot and data symbols.

estimates oiX: In order to estimate the channel impulse respohsave
. re-write (2) as:
diag(X)" £ ZAPP(Z ;) diag(X;) L1
Y=Ah+N=> An+N, (11)
=0
—di ) (X, = .
dlag< ;APF‘ (Xo = am) am, ==, whereA = diag(X) 2, A, is theith column of matrixA and
T [A],.; = ak,u. From (11), we get
> APPY (Xy g =am)am| |, (8) L1
m Y. = Zak,lhl+Nk7 0<kE<N-1. (12)
=0
wherear, (m =0,.--, M — 1) represents the set of pOSSIblerhe noise and observed data are decomposed as in [7]:
symbols in the mappmg constellatiof represents the size
of the mapping constellation amPP") (X = a,,) is thea L-1 L-1
posteriori probability of X, = a, in theith iteration;R " N = Z N;, Y = Z (Arhy +Np) = Z Z, (13
is aN x N matrix: =0 =0
_ — _ where N; = (Noy,---,Ny_1)" with a variance20? =
Rg\ZI)XN = diag(X)(z) diag(X)(”* 2010%, Zy = (Zoy,- -+, Zn-1,) andZ; = A;hy + Nj. Here,
= diag< ZApp(i) (X0 = aum) |Oém|2 o the noise variance factor$’s, which satisfyz 6 =1, are

=0
- important parameters which control the rate of convergeifice
) - 2 the NCD-EM algorithm [13]. We choose the complete data as
ZAPP( (Xn—1 = am) am] 1 ) k = (Z,A), whereZ = (Zy,--- ,Z1_1), and the auxiliary
" function for the NCD-EM can be written as
For a phase modulated system, all symbols have the same

energy€. Thus, (7) can be simplified into (h|h(£)) =Ex {k’g p(x|h) [Y,h" )}

. = P(Z, AlY,h)log p(Z, Ah)dZ. (14
hi+Y = g—mdlag( gX) Y. (10) ;/z ( | ) &Pz Al 4
With equiprobable transmitted symbols, the auxiliary fime

C. NCD-EM Channel Estimation becomes

In this section, the NCD-EM algorithm is derived W|thQ(h|h(L) Z/ Z A Y, h" ))log P(Z|A, h)dZ.

the complete data chosen by decomposing the noise and (15)
observation components. NCD-EM channel estimation for an
uncoded OFDM system has been introduced in [7] and tiddter some derivations given in Appendix A, we get
NCD-EM algorithm for a coded OFDM system is derived herg¢16) at the bottom of the next page, wherg, =



TABLE 1
NUMBER OF COMPLEX MULTIPLICATIONS OFCL-EM AND NCD-EM IN ONE ITERATION (QUADRATURE AMPLITUDE MODULATION)

| I CL-EM [ NCD-EM |
(QTR%)X*NQ>_1 Qtdiag(X)TY || N x (L2 +2L +1) + %LS L2
Tr (R 5 )b L
Qfdiag (X) Ty N x (L+1)
Q'R{), , 2" Nx (2L + 1)
‘ Total H N><(L2+2L+1)+§L3+L2 NxBL+2)+L
(@0, sak1, -+ ,ak,—1) 1S the kth row of the matrixA, in (20) at the bottom of the next page. For phase modulated
¢ Iis thelth component of vectog and [9] system, (20) becomes:
L—-1
E{Zylar = .Y, 0O} = s vi— S w0 | h(+D) = h + L _oidiagX)'y. (21
wilar =< st B | Y ; 1S (1- L) +5NL g(Xx) (21)

(17)  We check the number of complex multiplications in (7), (20),
(10) and (21) as shown in Table 1 [16] and Table 2. For QAM

We chooses, = [9] [14] in our simulations, which provides mqqylation, CL-EM in most cases needs more computations

the best rate éf convergence as it will be proved in th@an NCD-EM in one iteration, and the ratio of numbers of

next section. From (11l), = X;Q, where(Qy, is the kth  complex multiplications is§ > L3 and L > 1)
row of the matrix Q. Hence, thea posteriori conditional

ity i i 0y — 1

probability in (163)can be written as (lak_ = slY,h®) = Nx(L*+2L+1)+ gLa y 1249l +1 .
P (X, = am[Y,h?). Thea posterioriconditional probability ~ ~ =,
is produced by the decoder. Taking the partial derivative of N x(3L+2)+L 3L +2 (§2)

(16) with respect to each channel coefficiepaind making the

derivative equal to zero, the new channel coefficient estéma
h(’H‘l)
l

For phase modulated system, CL-EM neddsomputations

egs than NCD-EM in one iteration.
may be expressed as in (18). For phase modulate

systems, (18) can be simplified into (19) at the bottom of TABLE 2
the page NUMBER OF COMPLEX MULTIPLICATIONS OFCL-EM AND NCD-EM IN
’ ONE ITERATION (PHASE MODULATION)

IV. COMPLEXITY AND CONVERGENCERATE COMPARISON

_ : ) I CL-EM [ NCD-EM |
In this section, the complexity of CL-EM and NCD-EM arg—— . of
analyzed and compared. oy diag(X)TY | Nx (L+1)+L
_ _ (1- ) L
A. Complexity per Iteration - o
In order to compare the complexity of CL-EM and NCDA 5N diag (X) Y Nx(Z+D+L
EM in one iteration, we re-write (18) in a matrix form ad Total [ NxZ+1D+L ][ Nx(L+1)+2L |
1 L—1 N-1
() — __—_ 2 2 — (1)
Q) = =75 > Il 3- ST lafP (aw = <[ Y, bY)
=0 k=0 ¢
L—1N-1
Z > Re {hz > GE {Zk,l|ak = C7Y,h(i)} P(ak = €|Y7h(i))} . (16)
=0 k=0

i San e TR R {Zk,l|Xk =am, Y, h(”} P(Xk = an|Y, h(i))

N-1
Z Z |a'rrb|2P(Xk = Oé'rrL|Yv7 h(z))

k=0 am

(18)

B N Z S e TN B 201X = a, YO L P (X = Y1) (19)

k=0 am



The reader should notice that the modulation size does notl) CL-EM Algorithm: For CL-EM, the complete data is
appear in Tables 1 and 2, because expectations based on= (X,Y). From (24), we get
posteriori probability, which are common operations to both

estimation methods, are not taken into account. D" H (h‘|h) = Fx {8(1915 log p (X,Y|Y,h°)

B. Analysis of the Convergence Rate { 0 log p (X, Y|Y hc)}T Y, he (28)
From [4] and [17], we know that the rate of convergence ohe ’ ’ ’

of the EM algorithm can be evaluated as: With the derivations in Appendix B assuming high SNR, we

DM (h°) = D H (h¢[h¢) [D1Q (h'[h%)] ", (23) 9€t

11 ClThC\ ~u
whereh® represents the limit point of the converging sequence D H (h*|hf) = 0. (29)
h’, From (25) and the complete data of CL-EM,

11 clt.C\ __
DR = T D (0 1) = Fic { 57100 » (X, Y1)
B, { =0 tog p (5]Y hf) [a%logpww,hﬂ Y, b ) T
log p(X,Y|he)| |Y,h¢}. (30
b o9 p (X, Y 1h)| } (30
and Considering the equiprobability of transmitted data, we re

write (30) as (31), wher®y « N is always greater than O.
Therefore, at high SNR, CL-EM algorithm always leads to

T
E, {aiclogp(;qh‘) [a%logp(/ﬂhc)} |Y,h°‘}. (25) DM (h¢) = 0. (32)
With this rate of convergence close to zero, we can expect
The largest eigenvalue @M (h°) gives the rate of conver- that CL-EM should be already very close to its fix point at

DllQ (hcth) —

gence for the algorithm. the second iteration, i.e., after the first one based onspilot
Recall the relationship between the Fisher information and2) NCD-EM Algorithm: For NCD-EM, the complete data
the rate of convergence of the EM algorithm [4]: is k = (Z,A). From (24), we have
a) D' H (h¢|h°) is the Fisher information in the unobserved 5
part of x abouth®; D" H (h°h°) = Ez a { log p (Z, A|Y,h°)
b) DQ (h¢h°) is the Fisher information in the complete ohe
datax abouth®¢, andD!!(Q (h¢|/h¢) can be written as: ) f ‘
[—Iog p(z,A|Y,h‘>} Yhey, (39)
D!Q (h’[h°) = D' H (h°[h®) + DL (h®),  (26) ohe
where L (h) _ logp(Y|he); D2L (he) _  With the deTrivations in Appendix C, where8 =
o o [Bo,- -+, PL-1] , € is the average energy of transmitted sym-
Ey ot —L (h°) {ath (hc)] is a measure of the bols andl; represents the identity matrix of siZe we have,
. . assuming high SNR,
information in the incomplete daf¥ . 1
Therefore, the rate of convergence for the EM algorithm in DH (h’|h°) =~ —2N5 {diag(g)—l — IL} ) (34)
(23) can be interpreted as: 20
From (25),
Rate of Convergence o
Lost information due to unobserved data(27) D" Q (h°[h®) = E(z a {ahc log p (Z, A|h°)
All information in complete data 5 t
Thus, a smaller rate of convergence implies that less irderm {aTlog p (2, A|hc)} Y, hc} . (35)
tion is lost and the EM algorithm converges faster.
(i41) 1 @ n@® 1 L otgians @ty Lot (i)
h = Tr(Ry/y v)h' + ZQ diag(X)*""'Y — fﬂ R/, yQh (20)
Tr(RNxN)
1 . . *
——FEx {QTd|ag(X) [Y* — diag(X)" Q*h*] [Y* — diag(X)" ©2 hc*] diag(X)* Q* Y,hc}
(20%)

1 ,. . *
= 952 ZAPP(L) (X;) QTdiag(X ;)" diag(X;)" Q" = T‘QQTRN x N2 (31)
X



Using logp (Z, A|h¢) = log p (Z|A,h°)+1log p (A) and (C- than NCD-EM. With phase modulated systems, the ratio of

4), we get overall complexities can be expressed A8% L?)
e 1 . _ Nci, N(L+1)+L 1
11 ClIle) 1 overall ~ —.
DMQ (h°|h¢) = 353 N&diag(B) ™. (36) Nacoew N2+ L) 122~ T (39)

Substituting (34) and (36) into (23), we obtaldM (h¢) =

I, —diag(8). The eigenvalues dDM (h¢) arel — 5;, 0 < i )

| < L — 1, which explains whyj, — — is the best choice The Cramér-Rao Bound (CRB) provu_jes a Iovyer bound
= ’ ) ] L= for MSE to evaluate how good an unbiased estimator can

as suggested by simulation results in'fo] and [14]: the BI&)e [18] [17]. Besides, modified CRB (MCRB) is a looser

eigenvalue is minimized and the best NCD-EM convergenggng assuming perfect knowledge of the transmitted sig-

is achieved. With this choiceDM (h°>T can be written as ng [19] [20]. Its computation is less complex. The CRB for

DM (h¢) = diag {1 _ l,... 11— l] and we see the the uncoded OFDM_syst_em and the MCRB_for the OFDM

L L system have been given in [7]. Here, we derive the CRB for

relationship between the rate of convergence and the numbhasoded OFDM system. For the vector paramétgt 7]:

of taps in the channel: the more taps there are in the channel, .

the slower the NCD-EM converges. CRB(M)=1;" (h), 1=0,---,L-1 (40)

V. CRAMER-RAO BOUND FOR CODED OFDM

whereT (h) is the Fisher information matrix:
C. Overall complexity

0 0 f
Based on sections IV-A and IV-B, we can analyze theI(h> =By {%bgp(Y'h) (%logp(wh)) } (41)
overall complexity of the CL-EM and the NCD-EM. Since the
1 Making use of (B-8), we have
best rate of convergence of NCD-EM Is— —, we assume

that the number of iterations for convergencd.isThus, the 9 log p(Y|h) = — %QTdiag(X)(i)TY*
total number of complex multiplications for convergence is oh 2? _
L? + N(3L? + 2L). However, the numerical results in Fig. + —QQTR%)XNQ*h*. (42)

6 and Fig. 7 will show that the actual number of iterations 20
of NCD-EM is larger thanL. On the other hand, the rateSubstituting (42) into (41), we obtain the Fisher inforroati
of convergence of CL-EM is approximately 0. Therefore, th@atrix. The CRB for a single parameter ig" (h) and the
total number of complex multiplications for convergence igverall CRB for all parameters is
approximately equal to that of a single iteration. L-1
First, we check the difference(D, V') between the number CRB (h) = Z CRB () =Tr(I""'(h)). (43)
of complex multiplications in NCD-EM denoted bYnco,,e 1=0
and the number of complex multiplications in CL-EM denotegh our simulations, the Fisher information is obtained friva
by Nt pew With QAM modulations: average over a large number of OFDM symbols and the final

) 4, CRB is obtained by substituting the Fisher information into
DQAM (L7 N) = NNCDoverall - NCLoveraH = N (2L - 1) o gL : (43)

(37)
4 VI. NUMERICAL RESULTS
Since, forV > =, Doam(1,N) > 0 and, forl < L <N, In order to demonstrate the validity and the effectiveness
0 of the proposed EM-based channel estimation algorithms,

5L DeAM (L, N) > 0, Doam(L, N) is always greater than zeroy, ..o q oFpM system introduced in section Il has been

with N > = and1 < L < N which is always true in practice. Simulated. A 6-tap rectangular Rayleigh ISI channel hasibee

Especially, whenV > L3 and L >> 1, together with (22), the Cog_séi?rrz?' T;:% etlp]térecczlggnerle?anltivr\]ndt:]h 1S T(\s”dz?nmlf 12A
ratio of overall complexities can be expressed as su I€rs yclic prefix gin 15 Samples.
1/2-rate(133,171)s nonsystematic nonrecursive convolutional

Netwew: . L1 (38) code and a pseudo-random interleaver of size 480 are used
NNCDoeran T3xL 3 in simulations. The modulation scheme is 16-QAM. Pilot

Since the assumption df iterations underestimates the num—SymbOIS are uniformly inserted into every OFDM symbol.

ber of iterations of NCD-EM, we can expect a smaller ratio in

practice. Therefore, with a QAM modulation, even though CLA. Cramér-Rao Bound

EM needs more computations than NCD-EM in one iteration, Figure 3 shows CRBs for OFDM systems without coding

CL-EM has a lower overall complexity thanks to the almosind with two different coding schemes: the first code is the

zero rate of convergence. rate 1/2 code mentioned above with minimum distance 10; the
For phase modulated systems, since CL-EM needs lessxond code is a rate 1/5 convolutional code with minimum

computations in one iteration and converges faster thanNCdistance 25. Improving the code performance at a given kigna

EM, it is obvious that CL-EM has a lower overall complexityto-noise ratio £,/Ny) results in a lower CRB. For high
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E,/Ny, all CRBs converge to the MCRB as APP information 1.0
from the decoder becomes perfect; for ld /Ny, CRBs ,if"' Ve
for the coded systems converge to the CRB for the uncodgd095 sz*'*?
system as decoding does not bring improvement anymore. w;j
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Fig. 4. Mean square error (MSE) performances for CL-EM andOMNEM A ratio of estimate differences equa| to 1 means that EM
in coded OFDM system. The number of pilot symbols is 8. Motiltais

16-QAM. The channel has 6 taps. algorithm has converged.
In Fig. 6, at moderate SNRE/Ny = 10dB), we ob-
serve that CL-EM needs a dozen of iterations to converge;

B. CL-EM versus NCD-EM however, it is at least twice faster than NCD-EM under

We also compare CL-EM and NCD-EM. From Fig. gsimilar conditions. Furthermore, with different numbers o
we see that NCD-EM has slower convergence than CL-ENRPS in the channel, CL-EM always converges with almost the
it does not achieve CRB before the 18-th iteration. Simil&me number of iterations. However, NCD-EM convergence
behavior is observed in Fig. 5 for BER performance, wheregBeed depends on the number of channel taps. This result is
CL-EM approaches performance with perfect channel sta@nsistent with the theoretical analysis.

information (CSI) after 4 iterations only. In Fig. 7, at high SNR &5 /Ny = 20dB), we can see that
CL-EM always converges from the second iteration (the first
C. Rate of Convergence and Complexity iteration includes a pilot-based estimation). As expedtem

In order to show the convergence of CL-EM and NCD- EM32), the rate of convergence of CL-EM is almost zero for
more clearly, we draw the ratio of estimate differences m Fihigh SNR.
6 and Fig. 7, where The theoretical analysis of convergence and complexity
accomplished in section IV-C assumes high SNR. Good results
(44) are also measured at low SNR as can be seen in Fig. 6. For
[h® — ] 9 taps, the ratio of number of iterations between CL-EM and
p

. S [hG+D — b
ratio of estimate differences —————
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P ves L § v DERIVATION OF (16)

H S / Using (13), we get

" (ZIAh) = —_expd - LZ_IHZ Al

s INCD-EM 3 Taps 4" P T (2770-2)]\[ P 202 ! i

o 075 {NCD-EM 6 Taps —&— - =0

: MRS (A1)
. _Goemeti e | and

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Iteration Number

L-1
1 2
logp (ZIA,h) = =5 > [1Ze— Ahu* =7, (A-2)
Fig. 7. Ratio of estimate differences for CL-EM and NCD-EM doded =0
OFDM at E5 /Np=20dB. The number of pilot symbols is 16. Modulation is, . .
16-QAM. /No priot sy Using (15) and (A-2) and neglecting the constant numper

which will not impact the subsequent partial derivative, yet
the auxiliary function of NCD-EM:

NCD-EM is about 20% and the complexity ratio is about 69%. Q (h|h(i>) =
These ratios are 25% and 61% respectively for a channel with

L—1
6 taps. Z/* ! anﬁAlth?P(z,A|Y,h<i>)dz.
According to section IV-C, the complexity of CL-EM should z 20% =
be about 41% of NCD-EM. This ratio is obtained with the (A-3)
assumption that NCD-EM converges afteriterations which In (A-3
is underestimated. When considering MSE performance, ﬁ’\( ),
Fig. 4, NCD-EM achieves CRB afte3 iterations. Thus, L—1 L-1N-1
the ratio of overall complexities between CL-EM and NCD- Y _ 1Zi — Auhul®> = > " | Zks — agihul?
EM is actually 14%. Concerning BER performance, as shown (=0 1=0 k=0

in Fig. 5, NCD-EM needs 18 iterations to achieve the same L=l N—1

performance as CL-EM with only 4 iterations and the ratio of = »_ Y | Zil* = 2Re {Ziaj b } + |axahul*. (A-4)
overall complexities is approximately 55%. However, in the =0 #=0

iterative OFDM receiver, the soft demapping and decodirBubstituting (A-4) into (A-3), we get

procedures are also included in every iteration. If we abersi ,

these additional processes, the iterative receiver withEGL Q (h|h(l)) =A+B+C, (A-5)
channel estimator will be much less complex than that with

NCD-EM channel estimator. Therefore, CL-EM algorithm haVsVhere

a better performance-complexity trade-off. LZIN-1

_ 1 2 (6)
A=-5 Z/ZZ 3 12l P(z, A[Y.h )dz,
A =0 k=0
VII. CONCLUSIONS (A-6a)
1 L—-1N-1
We have derived EM based iterative algorithms for theB:ﬁzA:/z > 2Re {Ziaag hi}

estimation of the channel impulse response in a coded OFDM 1=0 k=0

system and compared the CL-EM algorithm using the classic p(z’ AlY, h(z‘)) dZ, (A-6b)
complete data with the NCD-EM algorithm where the com- LNt

plete data is obtained via decomposing noise and obsenvatio, 1 — 9 ()
components. The CRB for a coded OFDM system has alsd ~ 242 %: 2 ; ; |ar.ihul P<Z’ AlY,h )dZ.

been established as a lower bound for MSE performance. (A-6C)
Theoretical analysis shows that the convergence rate of CL-

EM is almost zero at high SNR, while that of NCD-EMSince the channel paramethris not contained in (A-6a),
depends on the number of channel taps and the choice & = 0; the second item (A-6b) can be transformed to (A-
noise variance factors. Taking into account the complgxéy
iteration, CL-EM is less complex than NCD-EM for all linear
modulations at the same error rate performance. Thus, CL-EM g {ZMA,Y, h(z‘)} _ / Zi p(z AY, h(i)) d7Z.

is an excellent OFDM channel estimator with a reasonable z

complexity. (A-8)

, where



From (12) and (13)Zx,; anday,; only depend on théth row Differentiating (B-5) yields
of A, denoted asay, = (ak,, - ,aki, - ,ak—1). THUS,
(A-7) can be written as ——log p(Y|h®) =

Oh¢
L-1N-1 P(X,)p(Y|X;,h%) 0
1 Y|X;, h°). (B-

=0 k=0

p(ak —¢[Y,ht )} . (A-9) Making use of Bayes' rule, we obtain

. P(X,)p(Y|X;, he
where the vectok represents a possible value of vectgr ( j>p§[ |h 5o B°) =P(X,]Y, h9). (B-7)
andg; is thelth component ok. With (12), (13) and (A-8), p(Y, h)
we get (17). Furthermore, with the same notations, the iteWith (B-6), we get

(A-5) can be written as (A-10). Substituting (A-9) and (A}10 4 9
into (A-6), we get the auxiliary function for NCD-EM in (16). 7, log p (Y[h®) = > P(X,[Y,h) — It log p (Y|X;, he).
X
(B-8)
Y,hC} =

0
d_PX;|Y,he) 5 —log p (YX;, h)

J

APPENDIX B
DERIVATION OF (29) Using (B-8) yields

In (28), )

Ex { ‘ —|09 p(Y[h)

log p (X, Y[Y,h®) = log p (X[Y,h)

=log p (X, Y|h) —log p(Y[h%). (B-1) g
In (B-1), considering the independence between the edoHpro (B-9)
able transmitted data and the channel parameters, we have

and (B-10). With perfect APP (high SNR),

2

~
~

‘ 1 ‘ ‘
log p (X, Y[Y,h%) = log ——p (Y|X,h%) —log p (Y[h%).

(B-2) Z P(X,|Y,h)
Substituting (B-2) into (28), we obtain (B-3). For the first X
item in (B-3), the expectation can be written as

]—Iogp<Y|xj,hc>

2

(B-11)

c a c
. > P(X4[Y,h?) 5 —log p (Y[X;, he)

X

< { H%Iogp(ﬂx,hc) Y h‘} =
Substituting (B-4), (B-9) and (B-10) into (B-3) and using-(B

2, (B-4) 11), we get (29).

> P(X;|Y,h%)

X

8 c
’ﬁIOQ p(Y|X;,h)

) APPENDIXC
where j enumerates all possible symbol sequendges of DERIVATION OF (34)
length N. For coded transmission, the log-likelihood function In (33)

log p (Y|h¢) can be written as [21]:

log p Y|hC = log Z P Y|X], hc) (B-S) IOQ p (Za A|Ya hc) = |Og p (Z|A7 hc) - |Og p (Y|hc)
+logp(Y|Z,A,h°) +logp(A). (C-1)

L-1N-1
B= 02 lz; ;02%6{ Z/sz,la};,lP(Zm,Y,h(l)) P(A|Y,h(l))dz}
| L=1n-i
2 S g efirat) ()} oo
1=0 k=0
L-1N-1
. szz/ ) b (A0 02
=0 k=0 A

L—-1N-1

202 > 2. larihul’P (A |Y,h(i>) Z | |? Z > |§z|2P(ak = cIY,h(i)) (A-10)
=0 A

k=0 k=0 ¢
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With (13), Y is completely known from Z, thus perfect APP (high SNR), we get
@p(Y|Z,A,hC) = 0; since p(A) does not depend

on he, it will not impact the subsequent partial derivative. Ez ) { Hiclogp(zm,hc)
Therefore, we get (C-2). Using (12) and (13), we get oh

2

Y,hC} =

1 . -1
— Nediag(8) ™', (C-6)
p(Z|A,h“)o<exp{ 2022 |Zl Alhlc||2}. (C-3) o?

=0

2
1
Thus, Ez.a) { H aflclogp(Ylw Y,hC} = 57 NEL,
d . 7
Tt ——log p(Z|A, h°) (C-7)
1 and (C-8). Substituting (C-6), (C-7) and (C-8) into (C-2g w
- Zo — Aoh) Ag, - - ;
{50 (2o oh5)' Ao, get (34).
1 f T
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