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Abstract

An accurate approximation for the conditional error probability on quasi-static multiple antenna (MIMO)

channels is proposed. For a fixed channel matrix, it is possible to accurately predict the performance of quadrature-

amplitude modulations (QAM) transmitted over the MIMO channel in presence of additive white Gaussian noise.

The tight approximation is based on a simple Union bound for the point error probability in then-dimensional real

space. Instead of making an exhaustive evaluation of all pairwise error probabilities (intractable in many cases), a

Pohst or a Schnorr-Euchner lattice enumeration is used to limit the local theta series inside a finite radius sphere.

The local theta series is derived from the original lattice theta series and the point position within the finite multi-

dimensional QAM constellation. In particular, we take intoaccount the number of constellation facets (hyperplanes)

that are crossing the sphere center. As a direct applicationto the accurate approximation for the conditional error

probability, we describe a new adaptive QAM modulation for quasi-static multiple antenna channels.
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I. INTRODUCTION

Since the achievable information rate of conventional systems using a single antenna at both transmitter

and receiver is limited by the constellation size, most recent wireless systems use multiple transmit and

multiple receive antennas (MIMO channel) to achieve higherdata rates [22][9] with a high diversity

order [20]. Several techniques have been proposed to improve the performance of these multiple antenna

systems regarding the wireless channel conditions, e.g. adaptive modulation [17] and antenna selection

[12].

An adaptive modulation technique [10][11] selects the highest information rate (e.g. increase the modu-

lation alphabet size) subject to a double constraint on error rate and the average transmitted power. The

selection is conditioned on the instantaneous channel state information within the current frame. Hence,

analytical expressions and numerical evaluations for the conditional error probability can be employed to

establish an adaptive modulation scheme.

In this paper, we propose an accurate approximation of the conditional error probability in a MIMO

system. This tight approximation is then used to design a newadaptive modulation scheme. In the latter,

the information rate is adapted per transmit antenna which allows to achieve a high spectral efficiency

with an improved adaptation flexibility. Taricco and Biglieri gave the exact pairwise error probability in

[18][19] for frequency non-selective multiple antenna systems. The pairwise error probability considered

in their paper is the mathematical expectation over all channel realizations. Thus, their closed form

expression cannot be used for adaptive modulation. Tarokhet.al. proposed in [21] a lower bound of the

error probability for a Gaussian channel. This bound is a valid approximation for high rate lattice codes.

Since it is a lower bound, the approximation given in [21] cannot provide good performance for adaptive

modulation. The tight error probability approximation described in this paper is conditioned on a fixed

channel realization. The proposed method does not require an intractable evaluation of all pairwise error

probabilities due to a judicious choice via Pohst/Schnorr-Euchner enumeration of dominant neighbors

inside a sphere centered around a constellation point.
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The paper is organized as follows. Section II introduces thenotations and the channel model. The accurate

approximation of the conditional error probability is given in Section III. Section IV describes the new

adaptive QAM modulation scheme for multiple antenna channels. Conclusions and perspectives are drawn

in the last section.

II. SYSTEM MODEL AND LATTICE REPRESENTATION

We consider a digital transmission system withnt transmit antennas andnr receive antennas. The

channel is assumed to be frequency non-selective and quasi-static. Thent × nr MIMO channel matrix

H = [hij] is constant duringTc channel uses, where the integerTc is the channel coherence time. In the

latter, one time unit is equal to one transmission period. Asusual, the coefficientshij are independent

zero-mean unit-variance complex Gaussian variables that take independent values eachTc periods. For

one channel use, the input-output model is

r = sH + ν, (1)

wherer is the lengthnr receive complex vector,s is the lengthnt transmit vector andν is an additive

white Gaussian noise. The transmitted symbolsk belongs to aMk-QAM modulation [16],k = 1 . . . nt.

The nt QAM constellations are not necessary identical, their Cartesian product is denotedCQAM.

Without loss of generality and for the sake of simplicity, weassume thatnt = nr. The study is similar

in the asymmetric channel case whennr ≥ nt. The performance study of the quasi-static multiple antenna

model in (1) is carried out thanks to lattices and sphere packings theory [6]. The paragraph below gives

a brief summary to point lattices and can be skipped by readers who are familiar with group/lattice

representation and the geometry of numbers.



4

Let K be a field, mainlyK = R the field of real numbers, orK = C the field of complex numbers.

Let A ⊂ K be a ring, mainlyA = Z the ring of integers, orA = Z[i] the ring of Gaussian integers. A

lattice Λ ⊂ Kn, also called a point lattice, is a freeA-module of rankn in Kn. An element belonging

to Λ is called a point or equivalently a vector. Any pointx = (x1, x2, . . . , xn) ∈ Λ can be written as an

integer linear combination ofn points

x =
n
∑

i=1

zivi,

where{vi} is anA-basis ofΛ, vij ∈ K, andzi ∈ A. The n × n matrix built from a basis is agenerator

matrix for Λ. In line convention, letG = [vij ], then a lattice point is written asx = zG, wherez ∈ An.

The squared norm ofx is defined as‖x‖2 = xx† =
∑n

i=1 |xi|2, where |xi|2 is defined by the product

of xi with its conjugate inK. In the real case, a latticeΛ is associated to a definite positive quadratic

form Q(x) = xxt = zGGtzt, where t denotes the transpose operation. The productGGt is called a

Gram matrix. SinceΛ has full rank, the determinant of the Gram matrix is positive. The fundamental

volume of the lattice is defined byvol(Λ) = |det(G)|, it is the volume of thefundamental parallelotope

P surrounded by the basis vectorsvi

P(Λ) = {x ∈ R
n | x =

n
∑

i=1

αivi, 0 ≤ αi < 1}.

Multiple antenna channels admit a complex lattice representation as randomZ[i]-modules. In this paper,

we will mainly use their real representation. As an illustrative example for deterministic highly structured

lattices, Fig. 1 shows the structure of the famous hexagonallattice A2. A generator matrix forA2 is

G(A2) =









1 0

1/2
√

3/2









.

Some of the important lattice parameters are also depicted in Fig. 1. Theminimum Euclidean distance

between distinct lattice points is denoted bydEmin(Λ) = 2ρ, where ρ is the sphere packing radius

associated toΛ as shown in the upper left part of Fig. 1. Each point hasτ neighboring points located at
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minimum distance. ForA2, we haveτ = 6. From a sphere packing point of view, the numberτ of nearest

neighbors is also calledkissing number. Considerx ∈ Λ and delimit its neighborhood by mediating

hyperplanes betweenx and all other lattice points. The obtained region is calledVoronoi cell or Dirichlet

region

V(x) = {y ∈ R
n | |y − x| < |y − x′|, ∀x′ ∈ Λ}.

For A2, V(x) has six facets obtained by the six mediating segments with the nearest points. Since a lattice

is a discrete subgroup ofKn, the distribution of Euclidean distances does not depend onx. Takex = 0, in

Fig. 1 notice that lattice points belong to shells centered on the origin. The Euclidean distance distribution

is given by the radius of lattice shells and their population(number of points in a shell). Similar to the

Hamming weight distribution of an error-correcting code defined over a finite field, thetheta series ΘΛ(z)

of Λ describes its Euclidean distance distribution

ΘΛ(z) =
∑

x∈Λ

q‖x‖
2

= 1 + τq4ρ2

+ . . . , (2)

whereq = eiπz, andz is a complex variable. The theta series of highly structuredlattices (e.g. integral

lattices) is known for low dimensions [6]. Some simple examples are

ΘZ(z) =
+∞
∑

m=−∞

qm2

= 1 + 2q + 2q4 + 2q9 + 2q16 + . . . = θ3(z),

where θ3(z) is a Jacobi theta function. It is trivial to show thatΘZn(z) = ΘZ(z)n = θ3(z)n. Also, the

theta series of the translated latticeZ + 1/2 is

ΘZ+1/2(z) =

+∞
∑

m=−∞

q(m+1/2)2 = 2q1/4 + 2q9/4 + 2q25/4 + . . . = θ2(z),

whereθ2(z) is also a Jacobi theta function. Finally, the theta functionof the hexagonal lattice is given by

ΘA2
(z) =

∑

x∈Λ

qQ(x) = θ3(z)θ3(3z) + θ2(z)θ2(3z) = 1 + 6q + 6q3 + 6q4 + 12q7 + . . . ,
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whereQ(x) is the quadratic form associated toA2. The reader can check that the theta series exactly

describesA2 shells population and radius as illustrated in Fig. 1. IfΛ is a random lattice, thenΘΛ(z) or

at least all its terms up toqC can be determined using theShort Vectors algorithm that solvesQ(x) ≤ C

[14][15][5]. Before terminating this tutorial section, let us introduce two more parameters related to the

density of the lattice sphere packing. Thedensity ∆ of a lattice is defined by

∆ =
volume of a packing sphere of radius ρ

volume of a V oronoi cell
=

Vnρn

vol(Λ)
,

whereVn = πn/2/Γ(n/2 + 1), andΓ(x) is the classical Gamma function. The center densityδ is defined

by normalizing∆, i.e. δ = ∆/Vn. The density ofΛ and its error rate performance in presence of additive

noise are also related to itsfundamental gain (also known as Hermite constant) defined by [6][8]

γ(Λ) =
d2

Emin(Λ)
n/2

√

vol(Λ)
= 4

n/2
√

δ. (3)

Now let us resume with the lattice representation of a multiple antenna channel. The productx = sH in

(1) is interpreted as a point in the Euclidean spaceRn, n = 2nt = 2nr. The pointx belongs to a real

lattice Λ of rank n. Then × n generator matrixG = [gij] of Λ is the real version ofH











































g2i,2j = ℜ(hi,j)

g2i+1,2j = −ℑ(hi,j)

g2i,2j+1 = ℑ(hi,j)

g2i+1,2j+1 = ℜ(hi,j)

(4)

Since s is limited to CQAM ⊂ Zn, then x ∈ CH ⊂ Λ, whereCH is a finite set ofΛ called a lattice

constellation or lattice code. WhenCQAM is square, the shape ofCH is given by the parallelotopeP,

i.e. CH and P are homothetic. The reader should notice that aMk-QAM modulation is defined as a

rectangular subset ofZ2 and that any scaling factor or any translation generates an equivalent set. The
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cardinality of the lattice constellationCH is
∏nt

k=1 Mk. The spectral efficiency of the uncoded QAM system

is
∑nt

k=1 log2(Mk) bits per channel use.

At the receiver side, it is assumed that perfect channel state information (perfect CSI) is available. CSI

is not required at the transmitter side. Finally, a maximum-likelihood detector based on a sphere decoder

is applied [23][1][3] to accomplish a low complexity detection.

III. A CCURATE APPROXIMATION OFERROR PROBABILITY

The lattice representation of a multiple antenna channel converts the MIMO model given in (1) into

a simple additive white Gaussian noise (AWGN) channel modelr = x + ν. For a given random lattice

Λ generated by a fixed channel matrixH, let Pe(Λ) denote the point error probability associated to the

infinite setΛ and letPe(CH) denote the average point error probability associated to the finite constellation

CH. Trivial geometrical properties leads to the inequalityPe(CH) ≤ Pe(Λ).

Due to the geometrical uniformity ofΛ, the error probabilityPe(Λ) does not depend on the transmitted

point, e.g.Pe(Λ) = Pe|0 ≤
∑

x 6=0
P (0 → x), whereP (x → y) is the classical notation for the pairwise

error probability andPe|x is the error probability conditioned on the transmission ofx. On the contrary,

CH is not geometrically uniform. To find its exact error probability, we should evaluatePe|x for all

x ∈ CH, and then average byPe(CH) = 1
|CH|

∑

x∈CH Pe|x.

For example, whennt = 4 and Mk = 16 for all k, a classical Union bound would cost65536 × 65535

Euclidean distance evaluations. To reduce the complexity,we propose in the following a method which

yields a very accurate approximation for the error rate ofCH at a negligible complexity price.

It is well known in lattice theory [6] that integrating a Gaussian noise over a Voronoi region to get the

error probability is an extremely difficult task. If integration is to be done numerically and if a random

lattice is considered, one can imagine to determine a complete description of the Voronoi region via the

Diamond Cutting Algorithm (Viterbo and Biglieri 1996 in [24]) and then integrate using the Gaussian
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distribution. Unfortunately, the task is still extremely complex. The integration must be done for all points

in the case of a finite constellation, or at least a large number of points if symmetry exists. Hence, error

ratesPe(Λ) andPe(CH) cannot be exactly computed by numerical integration that avoids Monte Carlo

simulation. Under the assumption that all facets of the Voronoi region are created by the first lattice shell,

we have

Pe(CH) ≤ Pe(Λ) ≤ τ(Λ) × Q

(

dEmin(Λ)

2σ

)

. (5)

In the above inequality,τ(Λ) is the kissing number,dEmin(Λ) is the minimum Euclidean distance, and

σ2 is the one-dimensional real noise variance. The situation in which the right inequality of (5) is valid

corresponds to dense lattice packings, i.e. the fundamental gain γ(Λ) given in (3) is greater than 1 [6][8].

Unfortunately, random lattices generated byH are not necessarily dense, especially fornt ≤ 4 as

illustrated in Fig. 2. Thus, in the general case, the theta series of Λ is needed to derive an upper bound

for Pe(Λ). In practice, during numerical evaluations, the theta series defined in (2) will be truncated

to a limited number of shells around the transmitted point. This truncation yields precise numerical

results because the lattice is transmitted on a Gaussian channel where pairwise error probability decreases

exponentially with respect to Euclidean distance.

When square QAM modulations are applied on the transmit antennas, (5) becomes (6) (see [4]),

Pe(CH) ≤ Pe(Λ) ≤ τ(Λ) × Q

(
√

3 ×
∑nt

i=1 log2 Mi

nr ×
∑nt

i=1(Mi − 1)
× Eb

N0
× γ(Λ)

)

(6)

whereEb/N0 denotes the average received SNR per bit.

Now, let us describe how shall we handle the non geometrically uniform setCH in order to reduce the

computational complexity with respect to the Union bound. With this method, we aim at finding a precise

approximation for the point error rate, although not in closed-form. Consider a 16-QAM constellation

transmitted on a Gaussian channel. It can be partitioned into 3 subsets: 4 points in the middle (I0), 8
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non-corner points on the facets (I1), and 4 points on its corners (I2). There are 3 different error rates,

one for each subset. The total point error rate is obtained by4/16Pe(I0) + 8/16Pe(I1) + 4/16Pe(I2),

no need to compute 16 error rates corresponding to16 × 15 distance evaluations. Now, generalize the

previous idea to a dimensionn ≥ 2, where the constellation is not cubic shaped (H is random).

For a given constellation pointx = sH = zG, the local theta series,i.e. the distance distribution of points

surroundingx and belonging toCH, depends onx. This observation is noticed in Fig. 3 that represents

points of a lattice constellation carved from a latticeΛ ⊂ R2. The local theta series of indicated points,

which are black filled up to a square radiusR, are not identical.

More precisely, the distribution of Euclidean distances around x depends on the position ofx in CH.

If x does not belong to the boundary ofCH (the point belongs to the interior of the constellation) then

boundary effects can be neglected and the local theta seriesis well approximated by the theta series of

Λ. Otherwise, if the pointx is located on the boundary ofCH, then the local theta series is derived by

translating the original one aroundx and deleting all lattice points that do not belong toCH. To do so,

we partition the constellation inton + 1 subsets

CH =
n
⋃

ℓ=0

Iℓ, (7)

whereIℓ contains lattice points located on the intersection ofℓ facets inCH. The subsetI0 is the interior

of the constellation. Notice thatx = zG ∈ Iℓ is equivalent toz belonging to the intersection ofℓ facets

in CQAM ⊂ Zn. Following (7), the error probability of the constellationbecomes

Pe(CH) =

n
∑

ℓ=0

pℓPe(Iℓ). (8)

The weighting factorpℓ is the probability that a point ofCH belongs to the subsetIℓ, andPe(Iℓ) is the

error probability associated toIℓ. The probabilityPe(Iℓ) is obtained by averaging over all pointsx ∈ Iℓ,

since the conditional probabilityPe|x depends on the local position ofx. In the sequel, we describe



10

how an accurate approximation of (8) can be obtained. The accuracy of the analytical approximation is

validated by comparing it to computer simulations as illustrated in Figs. 4 and 5.

A. Evaluation of the probability pℓ

For simplicity reasons, only square QAM constellations areconsidered. Thus, anyM-QAM is written

as the Cartesian product of Pulse Amplitude ModulationM-QAM = (
√

M-PAM)2. The generalization

to rectangular and cross bi-dimensional constellations isstraightforward. Also, it is assumed that QAM

symbols transmitted on the MIMO channel have the same a priori probability.

• All antennas transmit the same QAM set

The probability for a point component to be located on the edge of the one-dimensional PAM is2/
√

M .

Sinceℓ components out ofn must be on the PAM boundaries, then it is trivial to show that

pℓ =









n

ℓ









(

2√
M

)ℓ(

1 − 2√
M

)n−ℓ

. (9)

• Antennas transmit general QAM sets (not necessarily identical)

The numberℓ of constellation facets to which a pointx = zG belongs inRn is decomposed as

ℓ =
n
∑

i=1

ℓi, (10)

ℓ ∈ [0...n] and ℓi ∈ {0, 1}. The integerℓi is set to 1 ifzi location is on the PAM boundary . Notice that

zi, i = 1 . . . n, belongs to a PAM real constellation of size
√

M[(i+1)/2], whereMk is the size of thekth

bi-dimensional QAM set,1 ≤ k ≤ nt = n/2. For a given value ofℓ, let Lℓ,j = (ℓj
1 . . . ℓj

i . . . ℓj
n) denote a

length n binary vector whose components satisfy the sum condition (10), 1 ≤ j ≤









n

ℓ









. Then, it is

easy to show that

pℓ =
∑

Lℓ,j

n
∏

i=1

(

2
√

M[(i+1)/2]

)ℓj
i
(

1 − 2
√

M[(i+1)/2]

)1−ℓj
i

. (11)
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The above expression reduces to (9) when identical QAM sets are used on the MIMO channel.

B. Evaluation of the subset error probability Pe(Iℓ)

We establish an upper bound forPe(Iℓ) using the local theta series. Computer simulations given below

show the tightness of this bound which is due to the simple AWGN model defined byr = x + ν.

The error probabilityPe(Iℓ) used in (8) can be written as:

Pe(Iℓ) =
1

|Iℓ|
∑

x∈Iℓ

Pe|x, (12)

Let Sx,i = {y ∈ CH|dE(x,y) = di} denote the set of points belonging toCH and surroundingx at a

Euclidean distancedi. The shape ofSx,i is not necessarily spherical due to the cutting boundaries of the

constellation. The local theta series is defined by the coefficientsτx,ℓ,i = |Sx,i|, wherex ∈ Iℓ. The shells

in the local theta series are indexed byi in the subscript ofτ . The upper bound forPe(Iℓ) becomes:

Pe(Iℓ) ≤
1

|Iℓ|
∑

x∈Iℓ

∑

i

τx,ℓ,i × Q

(

di

2σ

)

. (13)

Finally, for a fixed channel matrixH, an accurate approximation of the point error probability for a

multi-dimensional QAM modulation transmitted on a MIMO channel is obtained by combining (13) and

(8)

Pe(CH) ≤
n
∑

ℓ=0

pℓ
1

|Iℓ|
∑

x∈Iℓ

∑

i

τx,ℓ,i × Q

(

di

2σ

)

. (14)

C. Numerical implementation of (14)

The coefficientsτx,ℓ,i of the local theta series are easily determined from the original theta series of

the random latticeΛ as follows:

• Step 1: Generate lattice pointsy ∈ Λ located at a distancedi from the origin. These points are found

using theShort Vectors algorithm based on a Pohst enumeration inside a sphere [14][15][5].

• Step 2: For eachy found in the previous step, check if the translatey + x belongs to the constellation

CH and incrementτx,ℓ,i accordingly.
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For the derivation of numerical results, we limited the total number of selected points in (14) to

Nx = min(1000,
∏nt

k=1 Mk). The number of points selected from the subsetIℓ (points lying on the

intersection ofℓ facets) is weighted bypℓ, i.e. we considerpℓNx such points. This method accurately

approximates the distribution of constellation points according to their position. The number of shells in the

local theta series has been limited toimax, where the most distant shell is at2d2
Emin(Λ). The conventional

factor 2 is fully justified by its corresponding 3dB signal-to-noise ratio margin on a Gaussian channel. If

the local theta series (aroundx) is empty, then the new search radius can be increased up to4d2
Emin(Λ)

(6dB SNR margin).

Another heuristic for controllingimax is to select the initial squared radius greater thanmini Dii, where

[Dii] = GGt is the lattice Gram matrix. It can be shown that the minimum Euclidean distance inCH

satisfies

d2
Emin(Λ) ≤ d2

Emin(CH) ≤ min
i=1...n

Dii. (15)

Fig. 4 illustrates the accuracy of (14) in the case of a fixed4 × 4 MIMO channel. The point error

rate is plotted versus the average signal-to-noise ratio (average SNR assumes thatE[|hij |2] = 1). The

matrix H has been selected at random and kept unchanged for all results shown in Fig. 4. Four different

QAM combinations have been tested. The notation 4*M-QAM means that 4 transmit antennas are using

M-QAM. When transmitted constellations are not identical,a notation as 16-16-64-64-QAM would mean

that M1 = M2 = 16 and M3 = M4 = 64. In all cases, computer simulation results below10−1 are

very close to the proposed analytical approximation. Fig. 5illustrates the average error probability of a

quasi-static4 × 4 MIMO channel with a finite coherence time (Tc = 10 instead of+∞). Expectation is

made over the distribution ofH in Fig. 5. The proposed approximation is very tight below10−1.

As shown in Fig. 6, the simple upper bound (6) is less accuratethan (14) based on the local theta series.

For low SNR, (6) is not necessarily an upper bound because some Voronoi facets are due to more distant
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points than those located on the first lattice shell (see the 4*16-QAM case). At high SNR, the influence

of those facets is negligible. Also, the gap between the simple bound and the exact error rate decreases

with the constellation size at high SNR.

IV. A PPLICATION TO ADAPTIVE MODULATION

In adaptive modulation schemes, the transmitter adjusts its parameters (modulation size, transmit power,

coding rate, etc) to the current channel state in order to guarantee a target error rate and to achieve the

highest possible spectral efficiency. We restrict our scheme to the adaptation of QAM modulation size on

each transmit antenna. Power adaptation and coding rate variation are not considered in this paper. CSI

is only available at the receiver side. The transmitter is informed via the feedback link about the current

QAM adaptation to be applied. The objective of our adaptive modulation scheme is the following: Given

an average signal-to-noise ratio per bit, findM1, M2, . . . , Mnt in order to maximize
∑nt

k=1 log2(Mk) under

the constraintPe(CH) ≤ PERtarget, wherePERtarget is the target point error rate. Notice that when

Pe(CH) ≥ PERtarget, no data is transmitted and the conditional error probability Pe(CH) is set to 0. In

the latter case, an outage is declared each timePe(CH) ≥ PERtarget. In practice, if the quality of service

depends on the frame error rate (FER) and if a frame has lengthNF transmit periods,NF ≤ Tc, then

FER = 1 − (1 − PER)NF ≈ NF × PER for uncoded modulations. The use of channel coding would

only modify the relation betweenFER andPER. Hence,PERtarget can be easily linked toFERtarget.

A. A New Adaptive Modulation Scheme

Assume that thent-antenna transmitter hasNq distinct QAM modulations. For example,Nq = 4 if

square constellations 4-QAM, 16-QAM, 64-QAM and 256-QAM are used. If all Tx antennas use the same

QAM constellation, then the adaptation scheme should select an optimal solution(M1, M1, . . . , M1)opt

amongNq possibilities. If Tx antennas use different QAM constellations, then the adaptation scheme
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should select an optimal solution(M1, M2, . . . , Mnt)opt amongNnt
q possibilities. The adaptive modulation

scheme is depicted on Fig. 7.

At the receiver side, the channel estimation block providesH andσ2 to the adaptation block. The PER

computation function employs (14) to computePER = Pe(CH), whereCH = CH(M1, M2, . . . , Mnt).

The final block selects the optimal solution(M1, M2, . . . , Mnt)opt that maximizes
∑nt

k=1 log2(Mk) under

the guaranteePER ≤ PERtarget. Finally, the feedback link conveysnt× log2(Nq) bits to the transmitter,

e.g. 8 feedback bits ifnt = 4 andNq = 4.

The complexity of the adaptive scheme depends on the number of modulations to be tested in order to

select the optimal one. The poor adaptive modulation when all QAMs are identical,M1 = M2 = . . . =

Mnt, has a low adaptation complexity proportional toNq. On the contrary, the efficient adaptive modulation

when QAM constellations may be distinct per Tx antenna has anadaptation complexity proportional to

the number of possibilities, that is equal toNnt
q , e.g. 44 = 256 possibilities if 4 types of QAM are

authorized (M = 4, 16, 64, 256) with nt = 4 transmit antennas. Hence, a brute force adaptation will cost

us Nnt
q numerical evaluation of (14). The spectral efficiency varies from nt × 2 up to nt × 8 bits per

channel use, e.g. 13 possible values in the interval[8 . . . 32] bits per channel use whennt = 4 antennas

andNq = 4. In order to avoid considering theNnt
q = 256 possibilities, a key idea is to select a reduced

number of combinations where spectral efficiency is well quantized. We selected a limited number (e.g.

13) of possibilities where all values of spectral efficiencies are represented betweennt×2 andnt×8. The

choice of the 13 representative possibilities as in Table I is the first step of adaptation. In the second step

of adaptation, each transmit antenna must be assigned to a column in Table I, i.e. we must adequately

permute thent integersMk given by the row of Table I selected in the first step. We proposed to assign

theMk’s according to the order of‖hi‖, wherehi is theith row of H. This is inspired by coded systems.

Indeed, if an error-correcting code is used in combination with a soft output decoder, then under the genie
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condition (perfect feedback ofa priori information), the capacities of thent independent channels are

sorted according to‖hi‖2. In our case, QAM modulations are uncoded. Nevertheless, simulation results

show that the loss in spectral efficiency with our strategy compared to the brute-force is negligible. The

adaptation based on 13 possibilities performs almost exactly as well as 256 possibilities. This strategy

reduces the number of QAM combinations fromNnt
q down to (Nq − 1)nt + 1.

For nt = Nq = 4, we sort the transmit antennas such that‖h1‖2 ≤ ‖h2‖2 ≤ ‖h3‖2 ≤ ‖h4‖2. Then,

we start from the most robust combination (4*4-QAM) upward to the most efficient combination (4*256-

QAM) as shown in Table I. Only one integer is changed from one row to another according to a decreasing

order of Tx antennas power. Consequently, thanks to the dichotomy method applied on the reduced list,

a maximum of 4 evaluations ofPe(CH) are required instead ofNnt
q = 256.

B. Computer Simulation of the Adaptive Modulation

The considered target point error rate isPERtarget = 10−3. The QAM selection is made as in the

reduced list given in Table I. Fig. 8 presents the performance of a 4 × 4 antenna system satisfying the

constraint on the error probability for each channelH and each noise variance,i.e. Pe(CH) ≤ PERtarget.

Clearly, the curves corresponding to both non adaptive and adaptive schemes are below the target. The

upper curve corresponding to adaptive modulation is close but less than the10−3 target. It also shows a

good stability within a 10dB signal-to-noise ratio range. For high noise variance, the selected combination

corresponds to the lowest one (i.e. 4*4-QAM) for the majority of channels. On the other hand, PERof

the adaptive scheme tends to that of 4*256-QAM at high SNR. Fig. 9 represents the probability of no

transmission (known asoutage probability), i.e. Pe(CH) > PERtarget. The outage probability of the

adaptive modulation is superimposed with the outage of a fixed 4*4-QAM modulation. Therefore, the

proposed adaptive modulation is as robust as the 4-QAM but itguarantees a higher spectral efficiency. It

leads to a maximization of the spectral efficiency while keeping the error probability close to the target.

In Fig. 10, the total spectral efficiency achieved by a4 × 4 antenna system is presented versus the
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average received SNR while satisfying the PER constraint. This figure also emphasizes the advantage of

adaptive modulation. The stair including 4 soft steps corresponds to the non adaptive scheme when all Tx

antennas are using the same QAM constellation. Albeit the looseness of (6) shown in Fig. 6, the adaptive

modulation based on minimum Euclidean distance exhibits a small spectral efficiency loss at low SNR

with respect to adaptation based on local theta series.

V. CONCLUSIONS

An accurate approximation for the conditional error probability on quasi-static multiple antenna channels

has been described. For a fixed channel matrixH, it is possible to accurately predict the performance of

QAM modulations transmitted over the MIMO channel in presence of additive white Gaussian noise. The

approximation is based on a tight Union bound for the point error probability in then-dimensional real

space. Instead of making an exhaustive evaluation of all pairwise error probabilities (intractable even for

moderate values ofnt and M), a Pohst lattice enumeration is used to limit the local theta series inside

a finite radius sphere. The local theta series is derived fromthe original lattice theta series and the point

position within the finite multi-dimensional QAM constellation. As a direct application, we also described

an adaptive QAM modulation scheme for quasi-static MIMO channels.
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TABLE I

REDUCED LIST FOR ADAPTIVE MODULATION, Nq = 4 DISTINCT QAM SETS ANDnt = 4 TX ANTENNAS.

Tx 1 Tx 2 Tx 3 Tx 4

256 256 256 256 highest spectral efficiency
worst error rate performance

64 256 256 256
64 64 256 256
64 64 64 256
64 64 64 64
16 64 64 64
16 16 64 64
16 16 16 64
16 16 16 16
4 16 16 16
4 4 16 16
4 4 4 16

lowest spectral efficiency
4 4 4 4 best error rate performance
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Fig. 1. Structure of the hexagonal latticeA2 in the real bidimensional space. MIMO lattices are random, but their structure can be determined
by number theoretical algorithms.
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