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Abstract

An accurate approximation for the conditional error prabgbon quasi-static multiple antenna (MIMO)
channels is proposed. For a fixed channel matrix, it is p@ssibaccurately predict the performance of quadrature-
amplitude modulations (QAM) transmitted over the MIMO chehin presence of additive white Gaussian noise.
The tight approximation is based on a simple Union boundHergoint error probability in the-dimensional real
space. Instead of making an exhaustive evaluation of afle error probabilities (intractable in many cases), a
Pohst or a Schnorr-Euchner lattice enumeration is usedrti the local theta series inside a finite radius sphere.
The local theta series is derived from the original latticeta series and the point position within the finite multi-
dimensional QAM constellation. In particular, we take iafizount the number of constellation facets (hyperplanes)
that are crossing the sphere center. As a direct applicatidhe accurate approximation for the conditional error

probability, we describe a new adaptive QAM modulation faasj-static multiple antenna channels.
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I. INTRODUCTION

Since the achievable information rate of conventionaleystusing a single antenna at both transmitter
and receiver is limited by the constellation size, most meaeireless systems use multiple transmit and
multiple receive antennas (MIMO channel) to achieve higtheta rates [22][9] with a high diversity
order [20]. Several techniques have been proposed to irediw performance of these multiple antenna
systems regarding the wireless channel conditions, eapta@ modulation [17] and antenna selection
[12].

An adaptive modulation technique [10][11] selects the bghinformation rate (e.g. increase the modu-
lation alphabet size) subject to a double constraint onreate and the average transmitted power. The
selection is conditioned on the instantaneous channed stidrmation within the current frame. Hence,
analytical expressions and numerical evaluations for tveditional error probability can be employed to
establish an adaptive modulation scheme.

In this paper, we propose an accurate approximation of thliional error probability in a MIMO
system. This tight approximation is then used to design a aaptive modulation scheme. In the latter,
the information rate is adapted per transmit antenna whilcwa to achieve a high spectral efficiency
with an improved adaptation flexibility. Taricco and Bigligave the exact pairwise error probability in
[18][19] for frequency non-selective multiple antennateyss. The pairwise error probability considered
in their paper is the mathematical expectation over all oeamealizations. Thus, their closed form
expression cannot be used for adaptive modulation. Taebkh proposed in [21] a lower bound of the
error probability for a Gaussian channel. This bound is advapproximation for high rate lattice codes.
Since it is a lower bound, the approximation given in [21] mainprovide good performance for adaptive
modulation. The tight error probability approximation debed in this paper is conditioned on a fixed
channel realization. The proposed method does not requaiiateactable evaluation of all pairwise error
probabilities due to a judicious choice via Pohst/Schikarchner enumeration of dominant neighbors

inside a sphere centered around a constellation point.



The paper is organized as follows. Section Il introducesibtations and the channel model. The accurate
approximation of the conditional error probability is givén Section Ill. Section IV describes the new
adaptive QAM modulation scheme for multiple antenna chen@onclusions and perspectives are drawn

in the last section.

[I. SYSTEM MODEL AND LATTICE REPRESENTATION

We consider a digital transmission system with transmit antennas and, receive antennas. The
channel is assumed to be frequency non-selective and gi#i- Then; x n, MIMO channel matrix
H = [h;;] is constant durindg, channel uses, where the intedéris the channel coherence time. In the
latter, one time unit is equal to one transmission period.usal, the coefficients;; are independent
zero-mean unit-variance complex Gaussian variables #iet independent values eath periods. For

one channel use, the input-output model is

r=sH+v, (1)

wherer is the lengthn, receive complex vectos is the lengthn; transmit vector and is an additive
white Gaussian noise. The transmitted symbgobelongs to al\/,-QAM modulation [16],k = 1...n,.

The n, QAM constellations are not necessary identical, their €aain product is denotedoam-

Without loss of generality and for the sake of simplicity, agsume that; = n,.. The study is similar
in the asymmetric channel case when> n,;. The performance study of the quasi-static multiple areenn
model in (1) is carried out thanks to lattices and sphere ipgsktheory [6]. The paragraph below gives
a brief summary to point lattices and can be skipped by rsaddro are familiar with group/lattice

representation and the geometry of humbers.



Let K be a field, mainlyK' = R the field of real numbers, ok" = C the field of complex numbers.
Let A C K be aring, mainlyA = Z the ring of integers, oA = Z[i] the ring of Gaussian integers. A
lattice A C K™, also called a point lattice, is a freé-module of rankn in K™. An element belonging
to A is called a point or equivalently a vector. Any poit= (x,zs,...,z,) € A can be written as an

integer linear combination af points

X = Z ZiVi,
i=1
where{v;} is an A-basis ofA, v;; € K, andz; € A. Then x n matrix built from a basis is @enerator
matrix for A. In line convention, lelG = [v;;], then a lattice point is written as = zG, wherez € A™.

The squared norm of is defined ag|x||? = xx' = Y7 | |=;|?, where|z;|* is defined by the product

of x; with its conjugate ink. In the real case, a lattic& is associated to a definite positive quadratic
form Q(x) = xx' = zGG'z!, wheret denotes the transpose operation. The produ€t’ is called a
Gram matrix. Since A has full rank, the determinant of the Gram matrix is positivee fundamental

volume of the lattice is defined byol(A) = |det(G)

, it is the volume of thdundamental parallelotope
‘P surrounded by the basis vectors
PA) ={xeR" |x=)Y av; 0<a; <1}
i=1
Multiple antenna channels admit a complex lattice repriadiam as randonZ[i]-modules. In this paper,
we will mainly use their real representation. As an illustra example for deterministic highly structured

lattices, Fig. 1 shows the structure of the famous hexaglattade A,. A generator matrix ford, is

1 0

1/2 V3/2

G(Ay) =

Some of the important lattice parameters are also depictdéig. 1. Theminimum Euclidean distance
between distinct lattice points is denoted By,...(A) = 2p, where p is the sphere packing radius

associated ta\ as shown in the upper left part of Fig. 1. Each point haseighboring points located at



minimum distance. Fod,, we haver = 6. From a sphere packing point of view, the numbesf nearest
neighbors is also calledtissing number. Considerx € A and delimit its neighborhood by mediating
hyperplanes betweex and all other lattice points. The obtained region is caWerbnoi cell or Dirichlet
region

V(x)={y eR" ||y —x| < [y = x|, ¥x' € A}.

For A, V(x) has six facets obtained by the six mediating segments wétiméfarest points. Since a lattice
is a discrete subgroup df", the distribution of Euclidean distances does not depenxl. diakex = 0, in
Fig. 1 notice that lattice points belong to shells centenedhe origin. The Euclidean distance distribution
is given by the radius of lattice shells and their populatjpamber of points in a shell). Similar to the
Hamming weight distribution of an error-correcting coddied over a finite field, théheta series ©,(z)
of A describes its Euclidean distance distribution

Oa(z) =Y "M =1+ 7¢"" +..., )

xeA

whereq = ¢™#, and z is a complex variable. The theta series of highly structuedtices (e.g. integral
lattices) is known for low dimensions [6]. Some simple ex&spare

+00
Oz(2) = Z ¢ =14+2¢+2¢" +2¢° +2¢" +... = 05(2),

where 03(z) is a Jacobi theta function. It is trivial to show th@t.(z) = ©z(2)" = 65(2)". Also, the
theta series of the translated latti¢e+ 1/2 is
o0 )
Oz11/2(2) = Z gmtD® = og M4 4 0g0 4 oA L = 0y(2),
wheref,(z) is also a Jacobi theta function. Finally, the theta functibthe hexagonal lattice is given by

©4,(2) = Z g% = 05(2)05(32) + 02(2)62(32) = 1+ 6¢ + 6¢° + 6¢" +12¢" + ...,

xEA



where Q(x) is the quadratic form associated #,. The reader can check that the theta series exactly
describesA, shells population and radius as illustrated in Fig. 1Alfs a random lattice, the®,(z) or
at least all its terms up tg“ can be determined using ti8Rort Vectors algorithm that solves)(x) < C
[14][15][5]. Before terminating this tutorial section,tles introduce two more parameters related to the

density of the lattice sphere packing. Thensity A of a lattice is defined by

A volume of a packing sphere of radius p  V,p"

volume of a Voronoi cell ~ wol(A)’

whereV,, = /2 /T'(n/2 + 1), andI'(z) is the classical Gamma function. The center density defined
by normalizingA, i.e.é = A/V,. The density ofA and its error rate performance in presence of additive
noise are also related to ifandamental gain (also known as Hermite constant) defined by [6][8]

- dQEmm(A) 4 n/2
Y(A) = 2 ol 476, 3)

Now let us resume with the lattice representation of a midtgntenna channel. The product= sH in
(1) is interpreted as a point in the Euclidean sp&e n = 2n, = 2n,. The pointx belongs to a real

lattice A of rankn. Then x n generator matrixG = [g;;] of A is the real version oH

p

92,24 = %(hz,j)
92i+1,25 = —%(hm‘)
(4)
92i.25+1 = %(h”)
92i+1,2j+1 = %(hz,j)

Sinces is limited to Coam C Z", thenx € CY C A, whereCH is a finite set ofA called a lattice
constellation or lattice code. Whefigay is square, the shape @™ is given by the parallelotop®,
i.e. CH and P are homothetic. The reader should notice that/aQAM modulation is defined as a

rectangular subset df? and that any scaling factor or any translation generatesqaivaent set. The



cardinality of the lattice constellatiof™ is [}, M. The spectral efficiency of the uncoded QAM system

is > it log, (M) bits per channel use.

At the receiver side, it is assumed that perfect channet stddrmation (perfect CSI) is available. CSI
is not required at the transmitter side. Finally, a maximlikmhhood detector based on a sphere decoder

is applied [23][1][3] to accomplish a low complexity detiect.

1. ACCURATE APPROXIMATION OFERROR PROBABILITY

The lattice representation of a multiple antenna channeVexts the MIMO model given in (1) into
a simple additive white Gaussian noise (AWGN) channel medelx + v. For a given random lattice
A generated by a fixed channel matiik let Pe(A) denote the point error probability associated to the
infinite setA and letPe(CH) denote the average point error probability associateddditiite constellation

CH. Trivial geometrical properties leads to the inequality(CH) < Pe(A).

Due to the geometrical uniformity of, the error probabilityPe(A) does not depend on the transmitted
point, e.g.Pe(A) = Peg < >, o P(0 — x), where P(x — y) is the classical notation for the pairwise
error probability andPe is the error probability conditioned on the transmissionkofOn the contrary,
CH is not geometrically uniform. To find its exact error prolipj we should evaluatePe, for all

x € C*, and then average bfe(C™) = ;X ccom Pejx.

For example, whem; = 4 and M, = 16 for all k, a classical Union bound would co8%536 x 65535
Euclidean distance evaluations. To reduce the complexigypropose in the following a method which
yields a very accurate approximation for the error rate’8f at a negligible complexity price.

It is well known in lattice theory [6] that integrating a Ga&isn noise over a Voronoi region to get the
error probability is an extremely difficult task. If integian is to be done numerically and if a random
lattice is considered, one can imagine to determine a cdamplescription of the Voronoi region via the

Diamond Cutting Algorithm (Viterbo and Biglieri 1996 in [P4and then integrate using the Gaussian



distribution. Unfortunately, the task is still extremelgraplex. The integration must be done for all points
in the case of a finite constellation, or at least a large numbeoints if symmetry exists. Hence, error
rates P.(A) and Pe(CH) cannot be exactly computed by numerical integration thatdsvMonte Carlo
simulation. Under the assumption that all facets of the Worgegion are created by the first lattice shell,
we have

Pe(C™) < Pe(A) < 7(A) x Q (dE”;—U(A)) | (5)

In the above inequalityr(A) is the kissing numbeWg,,;,(A) is the minimum Euclidean distance, and
o2 is the one-dimensional real noise variance. The situatiowhich the right inequality of (5) is valid
corresponds to dense lattice packings, i.e. the fundarngai@a~(A) given in (3) is greater than 1 [6][8].
Unfortunately, random lattices generated Hy are not necessarily dense, especially fior< 4 as

illustrated in Fig. 2. Thus, in the general case, the thetees®f A is needed to derive an upper bound
for Pe(A). In practice, during numerical evaluations, the thetaesedefined in (2) will be truncated
to a limited number of shells around the transmitted poirttisTtruncation yields precise numerical
results because the lattice is transmitted on a Gaussiamehehere pairwise error probability decreases
exponentially with respect to Euclidean distance.

When square QAM modulations are applied on the transmitnawai® (5) becomes (6) (see [4]),

~— X7 (6)

3 x Z log2 Eb

Pe(CH) < Pe(A) < 7(A) x Q <\/

where E, /N, denotes the average received SNR per bit.

Now, let us describe how shall we handle the non geometyicaliform setC* in order to reduce the
computational complexity with respect to the Union boundthwhis method, we aim at finding a precise
approximation for the point error rate, although not in elddorm. Consider a 16-QAM constellation

transmitted on a Gaussian channel. It can be partitionea 3nsubsets: 4 points in the middl&y), 8



non-corner points on the facets;), and 4 points on its cornerd,). There are 3 different error rates,
one for each subset. The total point error rate is obtained g Pe(ly) + 8/16Pe(I1) + 4/16Pe(15),

no need to compute 16 error rates corresponding6toc 15 distance evaluations. Now, generalize the
previous idea to a dimension> 2, where the constellation is not cubic shap&t i6 random).

For a given constellation point = sH = zG, the local theta seriese. the distance distribution of points
surroundingx and belonging taC®, depends orx. This observation is noticed in Fig. 3 that represents
points of a lattice constellation carved from a lattitec R?. The local theta series of indicated points,
which are black filled up to a square radiis are not identical.

More precisely, the distribution of Euclidean distancesuad x depends on the position of in CH.

If x does not belong to the boundary 6f (the point belongs to the interior of the constellation)rthe
boundary effects can be neglected and the local theta serigell approximated by the theta series of
A. Otherwise, if the poinik is located on the boundary &, then the local theta series is derived by
translating the original one aroundand deleting all lattice points that do not belong@®". To do so,

we partition the constellation into + 1 subsets

cH =1, (7)
£=0

where, contains lattice points located on the intersectior &dcets inC*. The subsef, is the interior
of the constellation. Notice that = zG € I, is equivalent toz belonging to the intersection dffacets

in Coam C Z". Following (7), the error probability of the constellatib@comes

Pe(C™) = " piPe(1)). (8)
/=0

The weighting factop, is the probability that a point of ™ belongs to the subsét, and Pe(1,) is the
error probability associated th. The probabilityPe(1,) is obtained by averaging over all pointse 1,

since the conditional probability’e;, depends on the local position of In the sequel, we describe
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how an accurate approximation of (8) can be obtained. Tharacg of the analytical approximation is

validated by comparing it to computer simulations as ilattd in Figs. 4 and 5.

A. Evaluation of the probability p,

For simplicity reasons, only square QAM constellations @asidered. Thus, any/-QAM is written
as the Cartesian product of Pulse Amplitude ModulatidrQAM = (v/M-PAM)2. The generalization
to rectangular and cross bi-dimensional constellationstrisightforward. Also, it is assumed that QAM

symbols transmitted on the MIMO channel have the same aigmobability.

« All antennas transmit the same QAM set
The probability for a point component to be located on theeedfgthe one-dimensional PAM &/+/ M.

Since/ components out ok must be on the PAM boundaries, then it is trivial to show that

) e

« Antennas transmit general QAM sets (not necessarily identical)

The number’ of constellation facets to which a poigt= zG belongs inR" is decomposed as

i=1

¢ € [0..n] and?¢; € {0,1}. The integer; is set to 1 ifz; location is on the PAM boundary . Notice that
z, 1 =1...n, belongs to a PAM real constellation of sizéM;1)/2), where M, is the size of the:™

bi-dimensional QAM set] < k < n, = n/2. For a given value of, let L,; = (¢ ... ¢ ... ¢) denote a

n
lengthn binary vector whose components satisfy the sum conditié), (L < j < . Then, it is

14

) 1—-¢
n 2 (3 2 7
pe = S S . (11)
; 11 (\/ M [(z‘+1)/2}> ( M [(i+1>/21>

easy to show that



11

The above expression reduces to (9) when identical QAM setsised on the MIMO channel.

B. Evaluation of the subset error probability Pe(1,)

We establish an upper bound f&%(1,) using the local theta series. Computer simulations givéovbe
show the tightness of this bound which is due to the simple AWM@odel defined by = x + v.
The error probabilityPe(I,) used in (8) can be written as:

Pe(I}) = ﬁ > Pey, (12)

xely
Let Sx; = {y € CH|dgr(x,y) = d;} denote the set of points belonging ¢d* and surroundingk at a
Euclidean distancé;. The shape oby; is not necessarily spherical due to the cutting boundari¢beo

constellation. The local theta series is defined by the @effis7,;, = |S«.|, wherex € I,. The shells

in the local theta series are indexed bin the subscript ofr. The upper bound foPe(I,) becomes:
Pe(1)<iZZT -xQ<ﬁ> (13)
o= 1] xel, i o 20/
Finally, for a fixed channel matriH, an accurate approximation of the point error probabilily &

multi-dimensional QAM modulation transmitted on a MIMO cmal! is obtained by combining (13) and
(8)
1 d;
Pe(CH) < — ; — . 14
CREDII DD BAEL (2) (14)

zel, i
C. Numerical implementation of (14)
The coefficientsrk,,; of the local theta series are easily determined from theimalgheta series of
the random lattice\ as follows:
« Step 1: Generate lattice poingsc A located at a distanc& from the origin. These points are found
using theShort Vectors algorithm based on a Pohst enumeration inside a spherelBlf].
« Step 2: For eacly found in the previous step, check if the transhate x belongs to the constellation

CH and increment ,; accordingly.
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For the derivation of numerical results, we limited the tatamber of selected points in (14) to
N, = min(1000, [}, Mj). The number of points selected from the subget(points lying on the
intersection of¢ facets) is weighted byy,, i.e. we considep, N, such points. This method accurately
approximates the distribution of constellation pointsadng to their position. The number of shells in the

local theta series has been limiteditg,,, where the most distant shell is Zdf?

Emin

(A). The conventional
factor 2 is fully justified by its corresponding 3dB signahtoise ratio margin on a Gaussian channel. If
the local theta series (around is empty, then the new search radius can be increased wto, (A)
(6dB SNR margin).
Another heuristic for controlling,,... is to select the initial squared radius greater thamn; D;;, where
[D;] = GG! is the lattice Gram matrix. It can be shown that the minimuncliEean distance irCH
satisfies

d2

Emin

(A) < d3%,.. (C™) < min Dj. (15)

Emin i=1...n

Fig. 4 illustrates the accuracy of (14) in the case of a fixed 4 MIMO channel. The point error
rate is plotted versus the average signal-to-noise ratierége SNR assumes thaf|h;;|*] = 1). The
matrix H has been selected at random and kept unchanged for allsetutvn in Fig. 4. Four different
QAM combinations have been tested. The notation 4*M-QAM msetat 4 transmit antennas are using
M-QAM. When transmitted constellations are not identieahotation as 16-16-64-64-QAM would mean
that M, = M, = 16 and M3; = M, = 64. In all cases, computer simulation results beloo! are
very close to the proposed analytical approximation. Figlustrates the average error probability of a
quasi-statict x 4 MIMO channel with a finite coherence timé& (= 10 instead of+o0c). Expectation is
made over the distribution dfl in Fig. 5. The proposed approximation is very tight beloov!.

As shown in Fig. 6, the simple upper bound (6) is less acculate (14) based on the local theta series.

For low SNR, (6) is not necessarily an upper bound because &@monoi facets are due to more distant



13

points than those located on the first lattice shell (see thé-©AM case). At high SNR, the influence
of those facets is negligible. Also, the gap between the leirhpund and the exact error rate decreases

with the constellation size at high SNR.

IV. APPLICATION TOADAPTIVE MODULATION

In adaptive modulation schemes, the transmitter adjustsaitameters (modulation size, transmit power,
coding rate, etc) to the current channel state in order toaguee a target error rate and to achieve the
highest possible spectral efficiency. We restrict our sehéonthe adaptation of QAM modulation size on
each transmit antenna. Power adaptation and coding rat&tivarare not considered in this paper. CSI
is only available at the receiver side. The transmitter ferimed via the feedback link about the current
QAM adaptation to be applied. The objective of our adaptiamation scheme is the following: Given
an average signal-to-noise ratio per bit, fihfl, M, ..., M,, in order to maximized_," , log,(Mj) under
the constraintPe(CH) < PERyarget, Where PER,,, ... 1S the target point error rate. Notice that when
Pe(CH) > PERyu4et, NO data is transmitted and the conditional error probigbifie(C*) is set to 0. In
the latter case, an outage is declared each fitm@™) > PER,,.,... In practice, if the quality of service
depends on the frame error rate (FER) and if a frame has leNgthransmit periods/ N < T, then
FER =1- (1 - PER)™r ~ Nr x PER for uncoded modulations. The use of channel coding would

only modify the relation betweeh' £ R and PER. Hence,PE R4 can be easily linked t¢'E R g

A. A New Adaptive Modulation Scheme

Assume that they;-antenna transmitter ha¥, distinct QAM modulations. For exampley, = 4 if
square constellations 4-QAM, 16-QAM, 64-QAM and 256-QAM ased. If all Tx antennas use the same
QAM constellation, then the adaptation scheme should sele®ptimal solution(Ay, My, ..., M)

among NV, possibilities. If Tx antennas use different QAM constétlas, then the adaptation scheme
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should select an optimal solutid\/;, M, ..., M, )opt among/V,'* possibilities. The adaptive modulation

scheme is depicted on Fig. 7.

At the receiver side, the channel estimation block proviHeando? to the adaptation block. The PER
computation function employs (14) to computF R = Pe(CH), whereCH = CH (M, My, ..., M,,).
The final block selects the optimal solutiof/;, M, ..., M,,)., that maximizesy,* | log,(M;) under
the guaranted’ ER < PERy,, ... Finally, the feedback link conveys x log,(/N,) bits to the transmitter,

e.g. 8 feedback bits i, = 4 and IV, = 4.

The complexity of the adaptive scheme depends on the nunflmeodulations to be tested in order to
select the optimal one. The poor adaptive modulation whe@AMs are identical, M, = My, = ... =
M,,, has a low adaptation complexity proportional¥p. On the contrary, the efficient adaptive modulation
when QAM constellations may be distinct per Tx antenna haadaptation complexity proportional to
the number of possibilities, that is equal 16", e.g.4* = 256 possibilities if 4 types of QAM are
authorized (/ = 4,16, 64, 256) with n, = 4 transmit antennas. Hence, a brute force adaptation will cos
us N;* numerical evaluation of (14). The spectral efficiency varfem n; x 2 up ton; x 8 bits per
channel use, e.g. 13 possible values in the intej®al. 32] bits per channel use when = 4 antennas
and N, = 4. In order to avoid considering th&"* = 256 possibilities, a key idea is to select a reduced
number of combinations where spectral efficiency is wellrdized. We selected a limited number (e.qg.
13) of possibilities where all values of spectral efficiascare represented betweenx 2 andn; x 8. The
choice of the 13 representative possibilities as in Tabkethe first step of adaptation. In the second step
of adaptation, each transmit antenna must be assigned ttumrrcon Table I, i.e. we must adequately
permute then, integersM, given by the row of Table | selected in the first step. We prepo® assign

the M,’s according to the order dfh;||, whereh, is thei*" row of H. This is inspired by coded systems.

Indeed, if an error-correcting code is used in combinatiaih & soft output decoder, then under the genie
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condition (perfect feedback & priori information), the capacities of the, independent channels are
sorted according tdh;||?. In our case, QAM modulations are uncoded. Neverthelessjlation results
show that the loss in spectral efficiency with our strategsnpared to the brute-force is negligible. The
adaptation based on 13 possibilities performs almost Bxast well as 256 possibilities. This strategy
reduces the number of QAM combinations frakj* down to (N, — 1)n; + 1.

For n, = N, = 4, we sort the transmit antennas such thhi|? < ||hy||> < ||hs)* < ||h4|®. Then,
we start from the most robust combination (4*4-QAM) upwandhe most efficient combination (4*256-
QAM) as shown in Table I. Only one integer is changed from awveto another according to a decreasing
order of Tx antennas power. Consequently, thanks to theothally method applied on the reduced list,

a maximum of 4 evaluations aPe(C™) are required instead oV, = 256.

B. Computer Smulation of the Adaptive Modulation

The considered target point error rate i Ry, = 1072, The QAM selection is made as in the
reduced list given in Table I. Fig. 8 presents the perforneaota4 x 4 antenna system satisfying the
constraint on the error probability for each chankehnd each noise variandeg. Pe(CH) < PERyqrget-
Clearly, the curves corresponding to both non adaptive alaptave schemes are below the target. The
upper curve corresponding to adaptive modulation is clagddss than the0=3 target. It also shows a
good stability within a 10dB signal-to-noise ratio ranger Righ noise variance, the selected combination
corresponds to the lowest onee( 4*4-QAM) for the majority of channels. On the other hand, P&R
the adaptive scheme tends to that of 4*256-QAM at high SNB. Firepresents the probability of no
transmission (known asutage probability), i.e. Pe(C™) > PERy,,.. The outage probability of the
adaptive modulation is superimposed with the outage of a fk&l-QAM modulation. Therefore, the
proposed adaptive modulation is as robust as the 4-QAM hyuatantees a higher spectral efficiency. It

leads to a maximization of the spectral efficiency while kegphe error probability close to the target.

In Fig. 10, the total spectral efficiency achieved byt & 4 antenna system is presented versus the
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average received SNR while satisfying the PER constraimis figure also emphasizes the advantage of
adaptive modulation. The stair including 4 soft steps gpomds to the non adaptive scheme when all Tx
antennas are using the same QAM constellation. Albeit thedbess of (6) shown in Fig. 6, the adaptive
modulation based on minimum Euclidean distance exhibitmallsspectral efficiency loss at low SNR

with respect to adaptation based on local theta series.

V. CONCLUSIONS

An accurate approximation for the conditional error prabgbon quasi-static multiple antenna channels
has been described. For a fixed channel mdifixt is possible to accurately predict the performance of
QAM modulations transmitted over the MIMO channel in presenf additive white Gaussian noise. The
approximation is based on a tight Union bound for the poinbreprobability in then-dimensional real
space. Instead of making an exhaustive evaluation of allve error probabilities (intractable even for
moderate values af; and M), a Pohst lattice enumeration is used to limit the localahsdries inside
a finite radius sphere. The local theta series is derived fiteenoriginal lattice theta series and the point
position within the finite multi-dimensional QAM constdilan. As a direct application, we also described

an adaptive QAM modulation scheme for quasi-static MIMOroieds.
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TABLE |
REDUCED LIST FOR ADAPTIVE MODULATION, N, = 4 DISTINCT QAM SETS ANDn; = 4 TX ANTENNAS.
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\Txl\TxZ\TxB\Tx4

256 | 256 | 256 | 256 highest spectral efficiency
worst error rate performance
64 | 256 | 256 | 256
64 64 | 256 | 256
64 64 64 | 256
64 64 64 64
16 64 64 64
16 16 64 64
16 16 16 64
16 16 16 16
4 16 16 16
4 4 16 16
4 4 4 16
lowest spectral efficiency
4 4 4 4 best error rate performanc

(D
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Fig. 1. Structure of the hexagonal lattige in the real bidimensional space. MIMO lattices are randomt their structure can be determined
by number theoretical algorithms.
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