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Abstract

We show how to build full-diversity product codes under both iterative encoding
and decoding over non-ergodic channels, in presence of block erasure and block fading.
The concept of a rootcheck or a root subcode is introduced by generalizing the same
principle recently invented for low-density parity-check codes. We also describe some
channel related graphical properties of the new family of product codes, a family
referred to as root product codes.

1 Introduction

Product codes are powerful compound codes with rich and elegant graphical and alge-
braic structures. Their error and erasure correcting capabilities in both bursty and non-
bursty modes have been extensively studied in the two decades following their invention
by Elias [8]. One of the simplest methods for combining two codes is to form their direct
product, see [13], Chap. 18. Besides its nice algebraic properties [4][12][13], a product
code has a graphical representation that can lead to even more powerful generalizations
under both iterative encoding and decoding [20]. The interest in product codes has been
propelled by the results obtained from iterative soft decoding that yields an excellent per-
formance on classical ergodic Gaussian channels [16]. Several studies have been carried
out on decoding product codes [1][9][15], analyzing their asymptotic and low error rate
performance [7][17][18], unveiling more properties of their weight distribution [21], propos-
ing design criteria and analyzing their erasure rate in the presence of ergodic i.i.d erasures
[2][22], and describing the convergence of their iterative decoding [19], though not as much
as the huge literature that exists on Turbo and LDPC codes.

In this paper, erasures and fadings encountered during transmission are not independent
from one binary digit to another, they occur in blocks and are constant within a block,
e.g. see [3], Chap. 4. The exact channel model will be given in section 3. Given a data
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transmission channel with nc internal states, where nc is referred to as the channel diver-
sity order, an error-correcting code achieves a d-diversity order after decoding, e.g. on a
BSC channel with transition probability p, the error rate at the decoder output would be
written in the form Pe ∝ pd. The code is full diversity if d = nc. In the absence of unit-rate
linear precoding before transmission [10] (e.g. a unitary transformation), the block fading
Singleton bound [11][14] implies that d ≤ ⌊nc(1 − Rc)⌋ + 1 for a rate Rc code. A code
achieving the Singleton bound is referred to as maximum distance separable (MDS). An
MDS code is not necessarily full diversity. However, a full-diversity code is necessarily
MDS with coding rate Rc ≤ 1/nc.

Properties and methods for designing full-diversity product codes are studied in this paper.
Our study is restricted to bi-dimensional binary product codes in the finite-length case.
Some similarities exist between our product codes and array codes such as the dual of
B-codes [23]. Both families are MDS, but array codes are not full-diversity and they
are designed for channels with a relatively large diversity (nc = 5, 6 or more) while our
codes are meant for channels with limited diversity (nc =2 or 3). Before introducing the
rootcheck concept which is the main ingredient for the design of full-diversity product codes
under iterative encoding and decoding, section 2 below summarizes the principal ideas and
difficulties via the illustration of a simple 3 × 4 product code.

2 Problem Illustration

We illustrate the problem studied in this paper by setting block erasures on a simple prod-
uct code. Consider the product code C = [3, 2] ⊗ [4, 3] of rate R = 1/2 and length 12,
where [n, n − 1] represents the linear binary single parity-check code of length n. Recall
that a codeword of C can be written in a 3× 4-matrix form, where each row is a codeword
of [4, 3] and each column is a codeword of [3, 2]. The code C is a [12, 6, 4] code, it can be
encoded via a 6 × 12 generator matrix and decoded via a 6 × 12 parity-check matrix. In
this paper, we are only interested in encoding and decoding of a product code based on its
row and column constituents.

The matrix structure of codewords belonging to C is shown in Figure 1. A box is associ-
ated to a binary element. Half of the boxes are colored in white and the other half in red.
Assume that all red boxes are erased, i.e., all values of associated bits are lost, is the code
C capable of finding them with the help of white boxes? Similarly, when white boxes are
all erased, is the code capable of filling those erasures with the help of red boxes?
Four different colorings of the product code are given in Figure 1. In practice, they are
equivalent to four different channel interleavers (also known as multiplexers) applied on
code symbols. Consider the product code defined by Figure 1(a). If all red bits are erased,
the decoding of the first two rows followed by the decoding of the 4 columns will fill the
erasures. Unfortunately, if white bits are all erased, an infinite number of row-column
decoding iterations will never retrieve the erased values. Hence, in the terminology of
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Figure 1: Four different channel interleaving of code symbols. In the context of non-ergodic
channels, the 4 configurations define 4 different product codes.

communication theory, we would say that code 1(a) is not full diversity. The reader can
check that 1(b) and 1(c) are not full-diversity codes.
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Figure 2: The full-diversity product code defined in Figure 1(d). Privileged bits are indi-
cated by a pattern.

The product code defined in Figure 1(d) is full diversity. Indeed, if all red bits are erased,
the decoder is capable of filling their values after 3 decoding iterations (row → column
→ row). Similarly, if all white bits are erased, they can be determined after 3 decoding
iterations. The first bit (in red) on the first row is privileged because all other bits belonging
to the same row are white. For the same reasons, the third bit on the first row (in white)
is privileged because all other bits on the same column are red. A privileged bit, if erased,
can be solved in one decoding iteration. Figure 2 depicts code 1(d) with privileged bits
indicated by a pattern. Those bits are said to be connected to a rootcheck.
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The standard location of information bits is the upper left 2 × 3 corner. The position of
information bits can be moved to those connected to rootchecks. The new full-diversity
code is referred to as a root product code. It has the following properties:

• It is full diversity on both block erasure and block fading channels.

• Full diversity is achieved after one decoding iteration. Indeed, erasures on information
bits are filled in one decoding iteration (two iterations if we account for row and
column decoding, since some bits are solved via their horizontal rootcheck, others
are solved via their vertical rootcheck).

• It achieves the highest rate according to the block fading Singleton bound.

More efficient product codes should be considered, e.g., can we build a root product code
[16, 11]⊗2? Through an exhaustive search, the total number of red/white configurations is
about 2250! If all symmetries are taken into account, the number of configurations reduces
to about ≈ 2160. The solution for the design of full-diversity product codes is found via
the introduction of rootchecks in the code structure as described in section 4.

3 Channel Model and Notations

Linear binary coding for non-ergodic channels is considered. The channel state is assumed
to be invariant for some time period, finite or infinite. Given the channel state α, an input
x = ±1 and an output y = αx + η, the channel transition probability is

p(y|x, α) ∝ exp

(

−|y − αx|2
2σ2

)

,

where σ2 is the variance of the additive white Gaussian noise η. Two cases are considered:

1. The non-ergodic Rayleigh fading channel where the fading coefficient α belongs to
R

+, with probability density function 2αe−α2

. We should emphasize that maximal
diversity is still achieved in presence of other types of fading distribution, as in coding
for MIMO channels [6] where a channel state is assigned a high order Nakagami
distribution.

2. The block erasure channel where the fading coefficient α belongs to {0, +∞}.

Within a codeword of length N bits, it is assumed that α takes nc independent values.
Also, the fading instances are supposed to be independent from one codeword to another.
For simplicity, we consider the case nc = 2 channel states per codeword, as illustrated
in Figure 3. Code construction and analysis is generally straightforward for nc ≥ 3. Chan-
nel coding is made via a rate-R product code C[N, K]. The code C is built from a rate-r
constituent C0[n, k], also referred to as a subcode of the product code. Thus, we have
C = C0 ⊗ C0, N = n2, K = k2, and R = r2.
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Figure 3: Data transmission channel with 2 states.

In the rest of this section, we briefly recall some fundamental properties of fading channels
and their error-control coding. The channel diversity order is given by the number of
independent channel states. The Tx/Rx diversity order, controlled by the system designer
on the transmit and receive sides, is the number of independent replicas of the same
information. At high signal-to-noise ratio γ = 1

σ2 ≫ 1, on a block fading channel of
diversity order d = nc, the word error rate behavior should be

Pe ∝ γ−d. (1)

On a block erasure channel of diversity order d = nc, for a given block erasure probability
equal to ǫ, the word error rate behavior should be

Pe = ǫd. (2)

An error-correcting code whose error rate satisfies (1) and (2) after decoding is a full-
diversity channel code. According to the block fading Singleton bound, the coding rate R
of a full-diversity code is upper-bounded by:

Rmax =
1

nc

≥ R. (3)

The two following propositions are essential in the design of coding for non-ergodic
channels. Their proofs are simple and are left to the reader. For any code structure,
under ML decoding, full diversity on block erasure channels is a necessary condition for
full diversity on non-ergodic Rayleigh fading channels. This can be stated as follows

Proposition 1 Consider a linear binary code C[N, K]. If C is full diversity on a block
erasure channel then it is full diversity on a block fading channel under ML decoding.

As described in the next section, the special root structure for any compound code achieves
full diversity under iterative decoding. In this paper, we are concerned by product codes
only. Other full-diversity codes such as Turbo, LDPC, and GLD/Tanner codes have been
constructed by the authors, e.g. see [5] and references therein.
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Proposition 2 Consider a linear binary code C[N, K] with a root structure (LDPC, Prod-
uct, GLD, etc). Under iterative decoding, the code is full diversity on both block erasure
and block Rayleigh fading channels.

4 Root Checknodes for Linear Codes

A rootcheck is a special type of checknode suitable for designing codes on graphs matched
to iterative decoding when transmitted over block fading and block erasure channels. In
Tanner terminology [20], the constituent of a product code will also be called a subcode,
or a subcode node. In our practical examples, we are mainly focusing on subcodes defined
from the famous family of linear binary BCH codes [4][13].

Definition 3 A rootcheck is a subcode node with all roots colored in white and all leaves
colored in red. A similar definition is given after interchanging red and white.

�
�
�
�
�
�
�
�

Φ

Up to n − k root vertices on state 1

Φ: BCH constituent C0[n, k]

All leaves undergo state 2

6 n − k

> k

Figure 4: Structure of a rootcheck for a 2-state channel.

The definition of a rootcheck is illustrated by Figure 4. The version of the constituent C0

defined by a parity-check matrix H0 and used in a rootcheck must satisfy the following
constraint:
The n − k root vertices are assigned to n − k independent columns of H0. The simplest
convention is to write the parity-check matrix in systematic form, H0 = [In−k | P0], and
assign the first n − k columns to root bitnodes.

Proposition 4 Proposition 2 revisited at the subcode level (block erasure)
A rootcheck C0[n, k, d] guarantees full diversity to all its roots under block erasures.

Proof : If root bits are erased then recompute their value from leaf bits using H0.

Proposition 5 Proposition 2 revisited at the subcode level (block fading)
A rootcheck C0[n, k, d] guarantees full diversity to all its roots under block fading.
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Proof : Local optimal probabilistic decoding is given by

APP (b) ∝
∑

c∈C0|b
p(y|c), (4)

where b is a root. The sub-optimal log-map decoder considers the dominant likelihoods for
b = 0 and b = 1. Its log-ratio message is

Λ = ‖y − αx̄‖2 − ‖y − αx‖2 = 2Y + ν, (5)

Y = α2

1

n−k
∑

i=1

(xi − x̄i) + α2

2

n
∑

i=n−k+1

(xi − x̄i) = ω1α
2

1 + ω2α
2

2. (6)

At high SNR, we have ω1 ≥ 1 and ω2 ≥ 1. The exact values for ωi depend on the weight
distribution of C0. The 4th order χ2 distribution of Y guarantees the double diversity.

5 Full-Diversity Product Codes

The primary role of a full-diversity code is to ensure the highest diversity order for its
information symbols. Such a protection is not necessarily essential for parity-check symbols.
Hence, the following definition applies the rootcheck concept to information digits only.

Definition 6 A root product code is a product code where all information bits are covered
by rootchecks, i.e., all information bits are rootbits belonging to a row or a column rootcheck.

From propositions 4 & 5 and the above definition, we deduce that a root product code
is full diversity under iterative decoding on both block fading and both erasure channels.
The maximal diversity order is reached after one decoding iteration when parallel schedul-
ing is applied, or after two decoding iterations if serial row-column scheduling is performed.

The information rate should not be sacrificed on behalf of diversity. Thus, for nc = 2,
we should avoid rate 1/3 codes which are capable of attaining a 3rd order diversity. The
product code will be devised according to specific properties.

Design Property 7 The design coding rate satisfies the following inequalities:

1

3
< R ≤ 1

2
,

or equivalently √
3

3
< r ≤

√
2

2
.
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V1 V2E

Figure 5: Compact graph of a full-diversity product code with 2 supernodes on each side.
Arrows are pointing to rootchecks of the corresponding bit. Graph notations defined in
this figure will be used in the sequel. This representation is modified later in order to yield
a graph-encodable product code as shown for example in Figures 6 and 8 for r = 2

3
.

A product code C[N, K] = C0[n, k]⊗2 is graphically represented by a complete bipartite
graph (V1, V2, E), where V1 is the set of row subcodes, V2 is the set of column subcodes, and
E is the set of all bits. The vertices of V1 and V2 are completely connected. We also have
|V1| = |V2| = n vertices and |E| = n2 edges. By convention, row subcodes are drawn on
the left and column subcodes on the right. Since we are considering non-ergodic channels
with 2 states, V1 and V2 are split into two supernodes each containing n

2
subcodes. This

compact graph representation is depicted in Figure 5. Bits are associated to edges linking
row subcodes to column subcodes. Arrows in Figure 5 are pointing to rootchecks of the
corresponding bits.

Let us first focus on the upper supernode of V1. All rows have been assumed to be
rootchecks, each of them containing n − k roots as indicated on the edges undergoing
fading α1. Because the graph is complete, the number of edges linking a row supernode
and a column supernode must be equal to n

2
. Hence, there are n

2
−(n−k) bits with state α2

linking the two upper supernodes and n
2

bits linking diagonally opposed supernodes from
V1 to V2, as clearly indicated in Figure 5. The graph structure in the lower supernodes is
symmetric to that of upper ones. The graph construction is still valid for odd n and for
asymmetric product codes but it should be slightly modified accordingly.
Notice that n

2
− (n− k) is a non-negative integer since 1

2
<

√
3

3
< r. Finally, the number of

8



rootbits Kr is

Kr = 2 × n

2
×

(

(n − k) +
n

2
− (n − k)

)

≥ k2 = K,

because R ≤ 1

2
. We conclude that all information bits can be covered by rootchecks, i.e.,

the graph representation given in Figure 5 with 2 supernodes on each side represents a
full-diversity product code. We may also be tempted to announce now that a simple so-
lution has been found for the construction of full-diversity root product codes at any rate
satisfying the design property 7. Unfortunately, the diagonal links have n

2
digits which are

parity bits of C. The constituent code C0 cannot successfully carry out the computation
of those parity bits based on the knowledge of information bits because n

2
> (n − k) as

mentioned above. Therefore, iterative encoding of the product code C = C0 ⊗C0 based on
its row and column subcodes C0 is impossible when V1 and V2 are split into 2 supernodes.
In an equivalent terminology, we say that such a structure is not graph encodable.

Design procedure. The compact graph of a graph-encodable root product code is built
as follows:

• The number of edges linking two supernodes should be equal to the number of su-
pernodes since the graph is complete.

• To render a graph-encodable code, the number of supernodes cannot be equal to 2 as
in the previous graph representation. The number of non-root bits must be less than
or equal to n − k. In order to let the rootchecks cover all constituent information
bits, the number of supernodes in V1 and V2 should be taken equal to

⌈ n

n − k
⌉,

i.e., this is the number of supernodes on each side of the compact graph representa-
tion, where a supernode does not contain more than n − k subcodes.

• Colors should be selected in order to maximize the number of rootbits. After color
selection, information bits are placed on root edges.

Before showing 3 examples of full-diversity product codes obtained via the design procedure
described above, we would like to understand better the influence of the compact graph
structure on the coding rate. This section is restricted to graphs with strong symmetries
where rootbits are decoded in one shot as a consequence of Definition 3. This type of first
order rootbits is to be opposed to high order rootbits as defined in the next section, where
the compact graph has less symmetries. Unless otherwise stated, the order of a root code
is 1 by default. Now, we impose the following design property which is inherited from the
initial graph with 2 supernodes on each side.
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Design Property 8 A supernode of V1 or V2 has a maximum of 2 super-edges associated
to rootbits, one super-edge with incoming rootbits and the other with outgoing rootbits.

A super-edge is an edge linking two supernodes in the compact graph representation. Our
design procedure for first-order root product codes limits the number of binary elements
within a superego to a maximum of n − k bits.

Let us assume that all rootchecks are row subcodes, then the code guarantees full diversity
for all its information bits if n(n − k) ≥ k2, i.e. r2 + r − 1 ≤ 0.

Proposition 9 A full-diversity product code C0[n, k]⊗2 with all its rootchecks being row

subcodes satisfies r = k
n
≤

√
5−1

2
.

Such an unbalanced code should be avoided in practice. The constituent coding rate
should be lower bounded by (

√
5 − 1)/2 instead of

√
3/3 as stated in the design property

7. Now, let us examine encoding on the subcode level for a non-ergodic channel with 2
states. A root product code is graph-encodable if the subcode dimension does not exceed
the number of incoming and outgoing roots, i.e., if k ≤ 2(n − k).

Proposition 10 A graph-encodable full-diversity root product code exists if r = k
n
≤ 2

3
.

From the above propositions, we conclude that a valid range for the rate of the product
code constituent is √

5 − 1

2
≤ r ≤ 2

3
.

Corollary 11 A graph-encodable full-diversity root product code [16, 11, 4]⊗2 does not exist.

Of course, this corollary is meant for first order root codes. A third order full-diversity
[16, 11, 4]⊗2 code is built in the next section. Finally, we end this section by illustrating
our design procedure in Figures 6-11 with square product codes based on linear binary
constituents [6, 4], [12, 8], and [5, 3].
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Figure 6: Two compact graph representations of a full-diversity product code [6, 4, 2]⊗2,
r = 2

3
and R = 4

9
= 0.4444. Information bits transmitted on fading 1 (resp. fading 2)

are indicated on the graph edges by 1i (resp. 2i). The encoding can be made via the
graph using the activation schedule E1 followed by E2. Any channel state (α1 or α2) can
be assigned to unused rootcheck edges.
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Figure 7: Matrix representations of the full-diversity product codes [6, 4]⊗2 defined by the
compact graphs in Figure 6.
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Figure 8: Two compact graph representations of a full-diversity product code [12, 8, 3]⊗2,
r = 2

3
and R = 4

9
= 0.4444. Information bits transmitted on fading 1 (resp. fading 2)

are indicated on the graph edges by 1i (resp. 2i). The encoding can be made via the
graph using the activation schedule E1 followed by E2. Any channel state (α1 or α2) can
be assigned to unused rootcheck edges.
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Figure 9: Matrix representations of the full-diversity product codes [12, 8]⊗2 defined by the
compact graphs in Figure 8. All matrix patterns with r = 2

3
are identical, as in Figure 7.
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Figure 10: Two compact graph representations of a full-diversity product code [5, 3, 2]⊗2,
r = 3

5
and R = 9

25
= 0.36. Since the subcode [5, 3] is a shortened version of [6, 4], this

product graph is obtained by shortening the graph in Figure 6. The compact representation
may have its limitation: the encoding schedule is different on the right. Also, not all parallel
edges connected to a rootcheck are considered as information bits since k = 3.
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Figure 11: Matrix representations of the full-diversity product code [5, 3]⊗2 defined by the
compact graphs in Figure 10.
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6 Product Codes with High-Order Rootchecks

Is it still possible to find a full-diversity product code under iterative decoding when the
number Kr of rootbits is less than k2? From the study made in the previous section, the
answer is no due to the strong constraint stating that all information bits are decoded at
full-diversity after one decoding iteration only. Assume that Kr < k2. Can full diversity be
achieved beyond the first iteration and how many decoding iterations should be performed?
The answer to those supposedly difficult questions can be elucidated via high order rootbits.
This situation is well clarified by the tree structure in Figure 12. Since the girth in the
product code graph is equal to 4, order-4 rootbits do not exist. Assume that the root is
colored in white. For ρ ≤ 2, this root has order ρ + 1 if the leaves are red of any order
or white with order ρ. The red leaves can be rootbits or non-rootbits, their type does not
modify the rootbit order.

Proposition 12 A root product code attains full diversity order (or equivalently recovers
all information bits) after at most 3 decoding iterations.

order−1 rootbit

order−2 rootbit

order−3 rootbit

order−4 rootbit?

Figure 12: Tree structure for defining rootbits of order ρ = 1, 2, 3. By convention, a bit
that never achieves full diversity under iterative decoding will be assigned ρ = +∞.

Now, let us describe the construction of the full-diversity product code [16, 11]⊗2.
Firstly, we build a bipartite compact graph with ⌈ n

n−k
⌉ = ⌈16/5⌉ = 4 supernodes V1i

on the left and 4 supernodes V2i on the right, i = 1 . . . 4, where Vj =
⋃

i Vji, |Vj1| = |Vj2| =
|Vj4| = n − k = 5 and |Vj3| = n mod n − k = 1, j = 1, 2. This arrangement of supernodes
aims at positioning the k×k information bits in the upper left corner in the bi-dimensional
matrix representation. Figure 13(a) depicts the matrix form of the product code at step 1.
The location of rootbits can be easily derived, e.g., edges V11 ↔ V21 are rootbits associated
to the 5 rootchecks defined by the subcodes in V11. Similarly, the 5 edges V12 ↔ V21 are
rootbits associated to V21. Figure 13(a) also shows that V23 is the rootcheck of 3 bits, one
connected to V1,3 and 2 connected to V14. The total number of rootbits in this initial con-
figuration is maximized and is equal to 136 bits (greater than 112). Unfortunately, if you
cover the product code information bits by rootbits, it can be easily verified that iterative

14



row-column encoding is impossible. Hence, Figure 13(a) presents a full-diversity product
code which is not graph-encodable. The graph-encodable root product code is obtained
after two more steps: Step 2: Color in red the 3 white bits in V23 and color in white the
5 bits V23 ↔ V12. The result of this operation is that the first 11 bits of V23 are all full
diversity. Their order ρ can be observed in Figure 15. The 25 bits V12 ↔ V22 are still full
diversity but they degraded from ρ = 1 to ρ = 2. Step 3: Color in red 5 bits located on
a diagonal on edges V14 ↔ V21. The result of this operation is that the first 11 bits of V13

are all full diversity. Step 4 is meaningless, its role is to delete some red bits (color them
in white) in order to balance the number of bits transmitted on the 2 channel states. The
final structure is given in Figure 13(d).
We end the paper by proposing a [20, 15, 3] ⊗ [15, 10, 4] product code which is graph-
encodable, full-diversity, and achieving the highest possible rate R = 1

2
, suitable for both

block erasure and block fading channels. The design follows the procedure given in the
previous section but the graph is asymmetric since the product code is rectangular. Figures
16, 17, and 18 present the main properties of this full-diversity product code.

7 Conclusions

A finite-length design of bi-dimensional binary product codes suitable for block fading
channels has been proposed. The study is based on graphical tools and some simple
algebraic properties of product codes. Codes at several coding rates capable of achieving
the highest diversity order have been found. This work should be enhanced via the analysis
of the coding gain and the general asymptotic performance behavior of product codes on
non-ergodic channels.

�
�
�

�
�
�

�
�
�

�
�
�

rootbit on fading 2

bit on fading 2

rootbit on fading 1

bit on fading 1

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� �
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� �
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

[16,11,4]

[16,11,4]

(a) (b)

V2,3V2,3

V1,3

Figure 13: Steps 1 and 2 in the construction procedure of [16, 11]⊗2. Dashed white and
red rootbits have order ρ = 1.
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[16,11,4]

[16,11,4]

rootbit on fading 2

bit on fading 2

rootbit on fading 1

bit on fading 1

V1,3V1,3

Figure 14: Steps 3 and 4 in the construction procedure of [16, 11]⊗2. Dashed white and
red rootbits have order ρ = 1.
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[16,11,4]

[16,11,4]

rootbit on fading 2

bit on fading 2

rootbit on fading 1

bit on fading 1

ρ = 3

ρ = 2

ρ = 1 for dashed bits

Figure 15: Full-diversity root product code [16, 11, 4]⊗2 of order 3. Overall coding rate is
R = 0.4726, 3 iterations are needed to attain full diversity. For a given bitnode, ρ iterations
are needed to reach full diversity under parallel scheduling. Two red bits have moved to
V1,3 in order to match the code in Figure 14(d) to the specific [16, 11, 4] version we used in
our experimental results.
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Figure 16: A compact graph representation of a full-diversity product code [20, 15, 3] ⊗
[15, 10, 4], coding rate is R = 1

2
. Information bits transmitted on fading 1 (resp. fading

2) are indicated on the graph edges by 1i (resp. 2i). The encoding can be made via the
graph using the activation schedule E1 followed by E2.
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Figure 17: Matrix representation of a full-diversity product code [20, 15, 3]⊗ [15, 10, 4] with
high order rootchecks, overall coding rate is R = 1

2
. Information bits are located in the

standard 10 × 15 upper left corner.
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Figure 18: Matrix representation of a full-diversity product code [20, 15, 3]⊗ [15, 10, 4] with
high order rootchecks, where the order ρ of each bit is indicated.
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