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1 Channel model and notations

We consider the simple additive white Gaussian noise (AWGN) channel. In his 1959
paper [1], Claude E. Shannon showed that an optimal code is built by uniformly placing
codewords on an n-dimensional sphere. An upper and a lower bound for the word error
rate performance Pew of such a spherical code have been established by Shannon on an
AWGN channel [1] for finite n. The main code parameters are its length n and its infor-
mation rate R. The length n is the number of real dimensions. The information rate R
is expressed in bits per real dimension. The spherical code is an ensemble of 2nR points
uniformly placed on a sphere in IRn.
A quick review of Shannon results and its generalization to a Rayleigh fading channel
can be found in [7]. For n ≥ 100, the upper and lower bounds of Pew are superimposed.
Hence, an accurate approximation for Pew is its lower bound Q(θ0), the probability of a
codeword being moved outside its cone of half-angle θ0.
Before you read [1] and [7], let me summarize all the numerical evaluations by two for-
mulas. The first one is used to find θ0 from n and R, the second one to evaluate Q(θ0),
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2
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. The two standard signal-to-noise ratios are

related by Es/N0 = R × Eb/N0.
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For the word error rate Pew, please use
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The approximations are highly accurate in the above expressions. There is no need to
compute the exact integrals involving the solid angle and the error probability [1].
In the next section, I give a C program implementation for Q(θ). Sections 3 and 4
illustrate some numerical examples.
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2 C program implementation

/*****

Last Modification: 6 November 2006

****

****

N.B.: Use formula (51) on page 632 of Shannon’s 1959 paper,

See also

http://www.comelec.enst.fr/~boutros/coding/Allerton99_VialleBoutros_paper.pdf

*****/

#include "mathcom.h"

static int n;

static double RateFunction();

int main(argc, argv)

int argc;

char **argv;

{

char chain[200], filename[200];

double theta, rate;

double a, b, c;

int iter;

double val, diff;

double A, G, EL, factor, Pe, log_Pe, snrdb, snr;

double snrdb1, snrdb2, snrstep;

printf("######## Optimal Code (Spherical) Performance on AWGN Channel ######### \n");

printf("Q(theta) formula (51) of Shannon 1959, page 632. \n");

printf("Using the asymptotic rate formula (28), page 624 Shannon 1959\n");

printf("Computing the cone half-angle for a given rate\n");

printf("R=(1/n-1)*log2(sin(theta))+1/n*log2(cos(theta)*sqrt(2PIn)) \n\n");

printf("Real Space dimension (from 20 up to 200000) [1000] : ");

ReadString(chain);

if(chain[0]) sscanf(chain,"%d", &n);

else n=1000;

if((n<20)||(n>200000))

{

fprintf(stderr,"%s: n out of range 100...200000\n", argv[0]);

return(-1);

}

printf("Information Rate in bits/dimension (from 1/10 up to 8) [0.50] : ");

ReadString(chain);

if(chain[0]) sscanf(chain,"%lf", &rate);

else rate=0.50;
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if((rate<0.1)||(rate>8.0))

{

fprintf(stderr,"%s: rate out of range 1/10...8\n", argv[0]);

return(-1);

}

/* rate=1/10 <=> theta0=00.20 degrees */

/* rate=8 <=> theta0=69.50 degrees */

iter=0;

a=0.20; b=70.0;

do

{

c=(a+b)/2.0;

val=RateFunction(c);

if(val < rate) b=c; else a=c;

c=(a+b)/2.0; ++iter;

diff=b-a;

}

while((diff>1e-8)&&(iter<1000));

printf("The cone half-angle for %1.4f bits/dimension is equal to %1.8f degrees \n", rate, c);

theta=c*PI/180.0; /* we switch to radians */

if(SQR(tan(theta)) >= (0.25*n) )

{

fprintf(stderr,"OmegaFunction(): Warning, theta too close to 90 or n is small !\n");

}

printf("The modulation alphabet is spherical, Es=energie per real symbol.\n");

printf("n*P=squared radius of the sphere= n*2*Es=n*2*rate*Eb, P=2*rate*Eb \n");

printf("A^2=P/N0=2*rate*Eb/N0, the SNR per bit is SNR=Eb/N0 \n");

printf("Here, N0 is the noise variance per real component.\n\n");

snrdb1=-1.50;

printf("Start Eb/N0 in dB [%1.2f]: ", snrdb1);

ReadString(chain);

if(chain[0]) sscanf(chain,"%lf", &snrdb1);

snrdb2=20.00;

printf("End Eb/N0 in dB [%1.2f]: ", snrdb2);

ReadString(chain);

if(chain[0]) sscanf(chain,"%lf", &snrdb2);

snrstep=0.05;

printf("SNR step in dB [%1.2f]: ", snrstep);

ReadString(chain);

if(chain[0]) sscanf(chain,"%lf", &snrstep);
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sprintf(filename,"optimal_spherical_code_awgn_n=%d_rate=%1.2f_WER.dat", n, rate);

printf("Output file name for WER versus SNR [%s]: ", filename);

ReadString(chain);

if(chain[0]) strcpy(filename, chain);

sprintf(chain,"rm -f %s", filename);

system(chain);

printf("Eb/N0 (dB) || Word Error Rate (WER)\n");

Pe=1.0;

for(snrdb=snrdb1; snrdb <= snrdb2+0.01; snrdb += snrstep)

{

if(Pe<1e-20) break;

snr=exp10(0.1*snrdb);

A=sqrt(2*rate*snr);

if(atan(1.0/A) > theta)

{

/***

fprintf(stderr,"Warning : theta=%1.4f but lower limit is cot^-1(1/A)=%1.4f ! \n",

theta*180.0/PI, atan(1.0/A)*180.0/PI);

fprintf(stderr,"%s: Please increase the SNR for this rate=%1.4f.\n", argv[0], rate);

***/

continue;

}

G=0.5*(A*cos(theta)+sqrt(A*A*cos(theta)*cos(theta)+4.0));

EL=0.5*A*A-0.5*A*G*cos(theta)-log(G*sin(theta));

factor=sqrt(n*PI)*sqrt(1.0+G*G)*sin(theta)

*(A*G*sin(theta)*sin(theta)-cos(theta));

Pe=exp(-n*EL)/factor;

if(Pe<1.0)

{

printf("%1.2f %1.4e \n", snrdb, Pe);

WritePlotFile(filename, snrdb, Pe, "%1.2f", "%1.4e");

}

}/* end of snrdb loop */

return(0);

}/* end of main() */

/*---------------------------------------------------------------*/

static double RateFunction(theta)

double theta; /* in degrees, not radians */

{

return( (1.0/n-1.0)*log2(sin(theta*PI/180.0))

+1.0/n*log2(cos(theta*PI/180.0)*sqrt(2.0*PI*n)) );

}/* end of RateFunction() */

/*---------------------------------------------------------------*/
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3 Word Error Rate versus Information Rate

We illustrate in this section the word error rate of optimal spherical codes on a Gaus-
sian channel at finite length n = 100, 500, 1000, and 2000. Ten different values of the
information rate R are considered, 1/10 ≤ R ≤ 4. The word error rate Pe versus the
signal-to-noise ratio per bit Eb/N0 is given in Figures 1-4.
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Figure 1: Word error rate versus signal-to-noise ratio for length n = 100.
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Figure 2: Word error rate versus signal-to-noise ratio for length n = 500.

5



10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  2  4  6  8  10  12  14  16  18

W
or

d 
E

rr
or

 R
at

e

Eb/N0 (dB)

Performance of Optimal Codes, n=1000 real dimensions, AWGN channel

Rate 0.25 bits/dim
Rate 0.50 bits/dim
Rate 0.75 bits/dim

Rate 1.0 bits/dim
Rate 1.5 bits/dim
Rate 2.0 bits/dim
Rate 2.5 bits/dim
Rate 3.0 bits/dim
Rate 3.5 bits/dim
Rate 4.0 bits/dim

Figure 3: Word error rate versus signal-to-noise ratio for length n = 1000.
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Figure 4: Word error rate versus signal-to-noise ratio for length n = 2000.
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4 Application to VDSL2

Turbo trellis coded modulations (TTCM) [4] have been proposed for channel coding of
VDSL2 using QAM modulations for a large range of spectral efficiency values [8]. The
TTCM is serially concatenated with an outer code. The latter is a standard Reed-
Solomon (RS) of length 255 and dimension 239 defined over the field GF (256). As
designed in [8], a 128-QAM constellation is adequately partitioned and labelled, two bits
in a QAM symbol label are precoded with a rate 1/2 binary parallel turbo code yielding
a final spectral efficiency of 5 bits/sec/Hz. After taking into account the RS coding rate,
the information rate of RS+TTCM is R = 239/255 × 5 = 2.34 bits per real dimension.
The TTCM block length is 1022 QAM symbols (Turbo interleaver of size 2044 bits).
Hence, the code is in a real space of dimension n = 2044.
Let us compare the performance of the RS+TTCM to the error rate of an optimal code
having the same parameters. In order to convert the word error probability Pew given by
(2) into a bit error probability Peb, we propose the following: Assume that a codeword on
the n-dimensional sphere is surrounded by τn neighbours and assume that decoding errors
yield only one of those neighbours. Each codeword is labelled by nR bits. The considered
neighbours are labelled by log2(τn) bits, suppose that log2(τn) < nR. If random binary
labelling is used to index the τn neighbours, then we have

Peb ≈
1
2
log2(τn)

nR
Pew (3)

Let τ ∗

n
denote the greatest value attainded by the kissing number of an n-dimensional

sphere packing. It is known that [5]

20.2075n(1+o(1)) ≤ τ ∗

n
≤ 20.401n(1+o(1)) (4)

The lower bound has been proved by Kabatiansky and Levenshtein [3] and the upper
bound by Wyner [2]. Finally by using the right inequality in (4) we get

Peb .
0.401

2R
Pew (5)

Figure 5 illustrates the bit error rate of RS+TTCM versus optimal codes at finite length.
The coding gain gap is about 2.45 dB (3dB from capacity limit at n = +∞). The
capacity limit is given by the rate-distortion bound

Peb(n = +∞) ≥ H−1
2

(

1 −
C

R

)

(6)

Since R is the rate per real dimension, then C = 1
2
log2(1+2R Eb

N0

). Multilevel coded mod-
ulations with multistage decoding [6] exhibit performance similar to those of RS+TTCM.
We believe that feasible coded modulations exist at less than 1dB from optimal codes at
such high information rates.

5 Download in PDF format

Please use the URL below to download this document in PDF

http://www.comelec.enst.fr/~boutros/coding/Qtheta_large_n_anyR.pdf
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Figure 5: Reed-Solomon (255, 239)256 concatenated with a Turbo trellis coded 128-QAM
versus optimal spherical codes of finite length. Information rate is 2.34 bits per dimension.
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