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Abstract - We describe a class of asymptotically 
good codes built from the intersection of ran- 
domly permuted binary BCH codes. This family 
of pseudo-random error correcting codes, called 
Generalized Low Density (GLD) codes, is a direct 
generalization of Gallager’s Low Density Parity 
Check (LDPC) codes. GLD codes belong to  the 
larger family of Tanner codes based on a random 
bipartite graph. We study the GLD ensemble 
performance and prove the asymptotically good 
property. We also compare GLD codes minimum 
distance and performance to the Varshamov-Gilbert 
bound and BSC capacity respectively. The results 
show that Maximum-Likelihood decoding of GLD 
codes achieves near capacity efficiency. The sub- 
optimal iterative decoding of GLD codes is briefly 
presented. Experimental results of small and large 
blocklength codes are finally illustrated on both 
AWGN and Rayleigh fading channels. 

~ I. INTRODUCTION 

In his Ph.D. thesis [l], Robert Gallager stud- 
ied error-correcting codes based on low density 
parity-check matrices. Two revolutionary ideas 
have been exploited by Gallager : 

The use of random permutations linking simple 
parity codes to  build an efficient low complexity 
code that imitates random coding. 

An iterative decoding technique where a priori 
information and channel observation are both 
used to  compute a posteriori and new a priori 
information. 

Unfortunately, Gallager’s work has been forgotten 
by the majority of the scientific community until the 

recent invention of Turbo codes [2]. The unbeatable 
parallel concatenated recursive convolutional codes 
presented by Berrou, Glavieux and Thitimajshima 
exploit both ideas cited above. Another important 
work on low complexity concatenated codes has 
been done by Tanner [3] who made a generalization 
of Gallager’s codes. Tanner gave three different 
versions of an iterative decoding algorithm but 
he restricted his construction to deterministic 
permutations derived from structured graphs. 

We describe a class of Generalized Low Density 
codes by replacing simple parity codes in Gallager’s 
LDPC construction with binary BCH codes. Each 
parity check equation of an LDPC ( N , K )  code 
is replaced by the parity-check matrix of a small 
binary BCH (n ,k )  code called the constituent 
code. LDPC codes are usually defined by their 
sparse parity-check matrix, but they can also be 
described with a bipartite graph which is a Tanner 
representation of the whole code. Thus, a GLD code 
can be seen as a Tanner code built on a random 
graph where the constituent code CO is associated 
to each subcode node. 

In the next section, the GLD code is defined by 
a graphical representation showing that the whole 
code is equal to  the intersection of interleaved 
constituent codes. The GLD code parity-check 
matrix representation is given in [4]. GLD codes 
exhibit an excellent performance on both AWGN 
and Rayleigh channels and present a high BER 
slope at high SNR due to their large minimum 
distance. The ensemble performance is studied in 
Section I11 where GLD codes are proved to have 
a minimum Hamming distance proportional to 
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their blocklength, i.e. GLD codes are asymptot- 
ically good. Since the capacity study on AWGN 
channels is intractable, we compared the perfor- 
mance limit of GLD codes to the BSC capacity 
limit. GLD codes efficiency is very close to capacity 
limit when maximum-likelihood decoding is applied. 

The practical decoding of GLD codes is performed 
iteratively as briefly explained in section IV. The 
iterative decoding algorithm is based on a SISO 
(Soft Input, Soft Output) decoding of the small 
constituent codes and has a very low complexity. 
The decoding time can be dramatically reduced 
when all forward-backward procedures in the SISO 
decoding of the constituents are executed in parallel. 

11. STRUCTURE OF THE GLD 
CODE 

Figure 1 shows an LDPC code of length N = 12 and 
dimension K = 3. The code is defined by a regular 
bipartite graph. The left part contains 12 bit nodes 
(i.e. the codeword) and the right part holds 9 
subcode nodes (i.e. the parity-check constraints). 
The 9 constituents are simple binary SPC(4,3,2) 
codes. Thus, a 12-bit word included in the left part 
is a codeword of the resulting LDPC code, if and 
only if the 9 right clumps of 4 incoming bits belong 
to the SPC code. The 36 branches of the graph are 
chosen randomly. This binary (12,3) LDPC code 
is equal to the intersection of 3 interleaved block 
codes, called supercodes, where each supercode is 
the direct sum of 3 SPC codes. If we take the 
bit ordering of the first supercode as an identity 
reference, only two random permutations have to 
be applied before the intersection. Consequently, 
the regular random graph of Figure 1 is equivalent 
to two random interleavers linking direct sums of 
SPC codes. 

12 bit nodes 9 subcode nodes 

Figure 1: An LDPC code example. 

Let us now describe the generalization of an LDPC 
code by defining a GLD code from its graphical 
representation given in Figure 2. The (n,n-1,2) SPC 
code is replaced by a Co(n, k) BCH code with a cor- 
rection capacity equal to t, i.e. d ~ ~ i ~ ( C 0 )  > 2t + 1. 
Note that the degree of the subcode nodes is equal 
to n, the length of the constituent code. The GLD 
code length is N bits, which is the number of nodes 
in the graph left part. If J denotes the degree 
of the bit nodes, we conclude that the right part 
holds J N / n  identical BCH codes. Finally, an N-bit 
word included in the left part is a codeword of 
the resulting GLD code, if and only if the J N / n  
right clumps of n incoming bits belong to the 
BCH Co(n,k) code. The GLD code C graphically 
defined by Figure 2 can be written as follows [4]: 
C = nyzl C,, where C1 = CO e. . . e CO is the direct 
sum of N / n  constituent codes, and C,+, = rj(C1) 
for j = 1 . . . J-1, where x, is a random permutation. 

JNln subcode nodes N bit nodes 

Figure 2: The GLD code graph. 

It can be easily shown [3] that the coding rate of the 
GLD code C ( N ,  K ) ,  built from a regular bipartite 
graph with bit nodes of degree J and a constituent 
code Co(n, k), satisfies R = K / N  2 1 - J(1- k / n ) .  
The equality holds in most cases where the graph 
branches are selected by a random matching. 

Tanner gave a weak but interesting lower bound 
for both the length N and the minimum distance 
d ~ ~ i ~ ( C )  function of the graph girth g. Roughly 
speaking, we can write for the GLD code length 
N 2 [n]gI4 and for the GLD code minimum distance 
d ~ ~ i ~ ( C )  > [ d ~ ~ i ~ ( C ~ ) ] g / ~ .  Note that a product 
code is defined by a complete graph (g = 8, J = 2) 
and satisfies N = n2 and d ~ ~ i ~ ( C )  = [ d ~ ~ ~ i ~ ( C o ) ] ~ .  
Note also that the girth is always a multiple of 4 
when the subcode nodes are grouped into J sets 
each one having N / n  nodes. So, to guarantee a min- 
imum distance larger than or equal to [ d ~ ~ i ~ ( C o ) ] ~ ,  
the J - 1 random interleavers rj are chosen with no 
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cycles of length 4. The ensemble performance shows 
that in most cases the minimum distance of C is 
strictly greater than [ d ~ ~ i ~ ( C o ) ] ~ .  It approaches 
[djymin ( C O ) ] ~  when the length N approaches n3, 

111. ENSEMBLE PERFORMANCE 

In this section, we show how to compute the average 
weight distribution of the generalized low density 
code, and the latter is proved to be asymptotically 
good. We also consider a BSC with a transition 
probability 0 < p < 1/2 and find the maximal value 
of p for which the word error probability P, goes to 
zero when N goes to infinity. 

Average Minimum Distance 

Let us determine the average weight distribution 
of the ensemble of GLD codes built with a BCH 
code CO and random permutations TI,. . , , TJ-I. 
The weight coefficients are obtained by averag- 
ing over all possible interleavers ~j and depend 
on the moment-generating function g(s) [l] (i.e. 
the normalized weight-enumerator polynomial) 
of the constituent code CO. For example, the 
moment-generating function g(s) of CO = (7,4,3) is 
g(s) = (1 + 7e3S + 7e4S + e79/16. 

&(e) with G(s)e-es, and after applying the extended 
Stirling approximation (valid for large N ) ,  we get an 
upper bound on the average number of codewords of 
weight l in the GLD code (details omitted) : 

N ( l )  5 C(X,N) x e-NB(') 
- 

where X = e/N is the normalized weight. 
The two functions C(X,N) and B(X) are expressed 
as follows : 

C(X, N )  = d2TNX(1 - x e(J-1)/(12N'(1--X)) 

J 
n 

where H(X) is the natural entropy function and 
p(s) = log(g(s)). The upper bound has been 
optimized and the optimal value of s is related 
to the weight by X = p'(s) /n ,  where p'(s) is the 
derivative of p(s)  relative to s. 

B(X) = (J - l)H(X) - - [/J(s) + IC log21 + JsX 

0 J=2, Hamming Codes 

0 J=2, BCH Codes (t=2) 
AJ=3, Hamming Codes 
+J=3, Extended Hamming Code 
X J=3, BCH Codes (t=2) 0.7 

Gilbert-Varshamov Bound 

I 

! 
The first supercode C1 of length N is the direct 
stim of N / n  independent codes CO. Hence, its 
moment-generating function G(s) is simply a power 
of g(s), G(s) = g(s)N/n = '&&(l)ees, where &(e) 
is the probability that a word of weight belongs 
to CI. Since the total number of codewords in C1 
is ( 2 k ) N / n ,  then the average number in C1 of code- 
words of weight l i s  Nl(l) = 2("/")&(l). Exploiting 
the fact that C1, C2 = 7rl(Cl), . . ., CJ = TJ-~(C~) 
are totally independent, the probability that an e- 
weight word belongs to C = C1 n C2 n.. . n CJ can 
be written as : 

/ \ J  

P ( l )  = [ 8) 
Finally, the average number of codewords in C hav- 
ing weight e is : 

By using exactly the same bounding technique as 
in [l], i.e. upper bounding each of the coefficients 

Lower bound on the minimum distance (delta) 

Figure 3: GLD rate vs minimum distance. 

- Asymptotically, when N -+ 00, the average number 
N ( l )  of codewords of weight e goes to zero if 
B(X) > 0. The smallest value S of X €10.. .1/2[ 
satisfying B(S) = 0 and B(X) > 0 when X €10.. .6[, 
gives us a lower bound on the minimum distance 
6(C) = ~ H ~ ~ ~ ( C ) / N  of the GLD code. Thus, C is 
asymptotically good when 6 exists. This is the 
case when CO is a BCH code for any J 2 2. Figure 
3 shows the rate versus the lower bound of 6(C) for 
different constituent codes. These points are not far 
from the Varshamov-Gilbert bound and get close 
enough when J = 3 (intersection of 3 supercodes) 
or t = 2 (double error-correcting BCH codes). 
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Near capacity performance IV. ITERATIVE DECODING 

05 
N/n Forward 

Backward 

0 0  0 1  0 2  0 3  0 4  
BSC error probability p 

Now, let us compute the maximal value of p for 
which the word error probability P, of an ML de- 
coder goes to zero when N is arbitrarily large. An 
upper bound on P, is obtained by assuming that 
a decoding error occurs when at least half of the 
codeword non zero bits are covered. If j denotes the 
channel error weight, e the weight of a codeword and 
i the number of covered non zero bits, we have the 
following upper bound : 

N 

- __ 

7 -T-I- 

ikJ=2, Extended Hamming Code 
I3 J=2, BCH Codes (t=2) 
AJ=3, Hamming Codes 1 
+J=3, Extended Hamming Codes 

I 
BSC C*city ~ 1 

X J=3, BCH Codes (t=2) 

The iterative decoding of a GLD code with 
one interleaver 7r linking J = 2 supercodes is briefly 
described below. The first supercode C1 is called 
upper code and the second supercode Cz = .(Cl) 
is called lower code. If J > 2, the information 
propagation strategy from one supercode to another 
has a great influence on the iterative decoding 
performance. 

Let r = (TI,. . . , T N )  denote the channel output. The 
decoder starts by converting r into a conditional 
probability vector y = (p(r110), . . . , ~ ( T N I O ) ) .  The 
decoder structure (one iteration step) is illustrated 
in Figure 5 .  Two identical SISO decodings are per- 
formed in one iteration (similar to Turbo decoding 
[2]), the SISO decoding of the upper code followed 
by the SISO of the lower one. At iteration i, each 
SISO reads the observation y and the a priori 
information generated by the preceding decoder. 
Pe(i - 1) is the a priori (extrinsic) information 
generated by the lower SISO at time i - 1 and Pu(i) 
is the a priori generated by the upper decoder at 
time i. The a posteriori probabilities APP of the N 
coded bits are also computed by the SISO. 
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EbjNO (dB) 

Figure 6: GLD code on AWGN channel : length 
N = 420, rate R = 0.466, CO = (15,l l)  

The first code, suitable for mobile radio transmis- 
sions or small frame systems, has length N = 420 
and dimension K = 196. Its constituent code is the 
(15,11,3) BCH code and the graph degree is J = 2. 
The performance on AWGN channel is shown in 
Figure 6 for different iteration steps. The bit error 
rate is compared to the ML Union Bound and to 
the improved Gallager bound [SI. Figure 7 shows its 
performance on the Rayleigh fading channel. The 
loss caused by the fading is about 2.5dB. 

Eb/NO(dB) 

Figure 7 :  GLD code on Rayleigh channel : length 
N = 420, rate R = 0.466, CO = (15, l l )  

The second code, suitable for deep space com- 
munications or image transmissions, has length 
N = 2 x 65536. Figure 8 shows its BER versus the 
signal-to-noise ratio per bit. The performance of a 

rate 1/2 Turbo code (punctured PCCC with octal 
generators 23,35) having the same length is plotted 
on the same figure. The GLD code is 0.23dB away 
from the Turbo code. 
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Figure 8: GLD code on AWGN channel : length 
N = 2 x 65536, rate R = 0.466, CO = (15,l l)  
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