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Successive Interference Cancellation With SISO
Decoding and EM Channel Estimation

Mari Kobayashi, Joseph Boutrdglember, IEEEand Giuseppe Cairélember, IEEE

Abstract—We derive a low-complexity receiver scheme for joint been combined with channel coding and soft-in soft-out (SISO)
multiuser decoding and parameter estimation of code divisionmul- decoding [11]. The number of works in this direction is over-
tiple access signals. The resulting receiver processes the users sggne|ming. Without the ambition of being exhaustive, we refer to
rially and iteratively, and makes use ofsoft-in soft-outsingle-user [8], [12][23], and references therein. Acommon feature of these

decoders, ofsoft interference cancellatiomnd of expectation-maxi- . . . - ;
mization parameter estimation as the main building blocks. algorithmsis that single-user SISO decoders provide at each iter-

Computer simulations show that the proposed receiver achieves ation an estimate of the posterioriprobabilities (APP) for the
near single-user performance at very high channelload (number of user code symbols, which are used to form a soft estimate of in-

users per chip) and outperforms conventional schemes with similar terference to be subtracted from the received signal. In this way,

complexity. the contribution of a user is effectively subtracted from the signal
Index Terms—interference cancellation, joint data detection, only ifits symbol decisions are sufficiently reliable.
parameter estimation. A unified framework to iterative multiuser joint decoding

based on factor-graphs and sum-product algorithm [24] is
provided in [25]. In this framework, almost all algorithms
previously proposed (notably, those of [12] and [23]) have been
A MONG THE SEVERAL multiuser detection schemesederived in a simple direct way. Moreover, as a consequence
proposed for code division multiple access (CDMA) [1]of the sum-product approach, it is found tleatrinsic (EXT)
serial and parallel interference cancellation (SIC and PIC) aigopabilities [26] rather than APPs should be fed back to form
particularly attractive because they process directly the outRig soft interference estimate. As confirmed experimentally
of a bank of single-user matched filters (SUMF). The receivef, [27], APP-based soft interference cancellation yields a
front-end is identical to that of conventional detection. Thergjased residual interference term which tends to cancel the
fore, these methods can be seen as an “add-on” post-procesgigigful signal, and the APP-based algorithms of [12] and [23]
to enhance the performance of a conventional base-statigfhin a worse overall spectral efficiency than their EXT-based
receiver when particularly high channel load is needed, aggunterparts derived and analyzed in [25].
can be applied easily to eithenortor long spreading sequence  |n order to reduce parameter estimation errors, iterative SIC
formats [2]-[4]. schemes can be naturally coupled with iterative parameter es-
The main performance limitation of SIC/PIC schemes argmation in order to (hopefully) improve the estimates with the
1) error propagation caused by feeding back erroneous symfgtations, as long as the signal is “cleaned-up” from interfer-
decisions and 2) imperfect interference cancellation due to N@ice [28]. In [29], the tradeoff between the number of users per
ideal knowledge of channel parameters (e.g., the complex aghip (channel load) and the amount of training symbols is inves-
plitudes and delays of the users’ multipath channels). In thigated in a general iterative joint decoder which re-estimates the
work, we propose a receiver scheme which handles successfdfiynnel parameters at each iteration.
both problems. We propose a low-complexity iterative soft-SIC algorithm for
SIC is both simpler and more robust than PIC with respect {§int data detection and channel parameter estimation. The main
error propagation, since users can be ranked according to thgjiiding blocks of our receiver are SISO single-user decoders,
signal-to-interference plus noise ratio (SINR) and decoded in sgsft interference cancellation stages, and a channel parameter es-
quence [5]-{8]. Hence, we focus on SIC schemes. In early Worgation updating step which is formally equivalent to one step
[5], [6], SIC is applied to uncoded transmission and hard degjf the expectation-maximization (EM) algorithm [30], [31]. The
sions are used at each stage to remove the already detected ¥8MRlea to achieve polynomial complexity inthe number of users
from the received signals. In order to prevent error propagatiqg o apply EM “locally”, i.e., instead of using the traeposte-
the use of soft (opartial) interference cancellation and iterayiori distribution of the missing data given the observation and
tive SIC schemes has been proposed in different forms andR¥ current parameter estimate, we use the product distribution
different authors [8]-{10]. More recently, the SIC approach hagduced by the a posteriori marginal (symbol-by-symbol) prob-
abilities output by the SISO decoders at each receiver iteration.
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model allows the development of the algorithm in a simplean ..
clear way. On the other hand frame-synchronous transmissi user 1
with piecewise constant channel parameters is quite realis — ] &
in systems like universal mobile telecommunication syster, o oo
(UMTS) division duplex (TDD) [3], applied to indoor and  yser2
picocells with slowly moving user terminals. Generalizatior = C:
to asynchronous transmission and continuously time-varyir
multipath channels is left as an interesting topic for future work.
Related work can be found, e.g., in [32] (see also [31] an
references therein), where EM channel estimation is appli¢
to SIC in an uncoded system. In [33], joint parameter estimnfo frame
tion and data detection in a multiuser multipath environmer % Cx
is tackled by using an alternating maximization strategy ar
EM is used to solve the parameter estimates updating step.
[34]-[36], the EM approach is applied to the joint data detec
tion and parameter estimation in a single-user space—time coded
system. In [37], the SAGE algorithm [38] is applied to joinfig. 1. Coded synchronous DS/CDMA systeffi,( denotes interleaving,
MAP symbol-by-symbol detection and parameter estimation gfferent for each user).
an asynchronous CDMA system. The algorithms obtained in
[37] have exponential complexity in the number of users as thdere
SAGE is not applied “locally” (as opposed to what we do here). « Y ¢ CE*N andY® e CL*T are the arrays of received
Classical references on the application of EM in communica-  signal samples in the data and training phases, respec-
tions problems are [39], where EM is applied to parameter es- tjvely.
timation in digital receivers, and [40], where several iterative « N e CL*N andN(®) e CL*T gre the corresponding ar-

multiuser schemes for uncoded CDMA (with perfectly known  rays of noise samples, assumed complex circularly sym-

parameters) are derived as applications of EM and SAGE. metric Gaussian independent identically distributed (i.i.d.)
The paper is organized as follows. In Section Il, the syn- Ne(0, No).

chronous CDMA signal model is presented. In Section lll, we . § ¢ ¢-*K contains the user spreading sequences by
derive the proposed receiver structure. In Section IV, we present  ~glumns.

some numerical results, and in Section V, we summarize our, w — diag(ws, . .., wy ) contains the user complex am-
conclusions. plitudeswy,.

Notation conventiOﬁs: . _ « X e CE*N js the array of transmitted code symbols.
* Let A be a matrix, them,,, a” andas. , (or equivalently  « X*) ¢ C**T isthe array of transmitted training symbols

[Alx,») denote thenth column, thekth row and the (known at the receiver).

(k,n)th element ofA. « N,T,L and K denote the code block length and the
*z ~ Ng(p, X) indicates that the random vectaris training sequence length (in symbols), the spreading

complex circularly symmetric jointly Gaussian with mean factor (number of chips per symbol) and the number of

E[z] = p and covarianc&[(z — p)(z — )] = . users, respectively.

+ The superscript’ indicates Hermitian transpose.

* A « B indicates thatd and B differ by a multiplicative
term.

* A = Bindicates thatd and B differ by an additive term.

* Probability density functions (pdf) are denoteddgy) and
probability mass functions (pmf) are denotedhy-).

The total frame length in symbols is equal 3 + 1'. Since
the channel amplitudes remain constant over the whole frame
and the system is synchronous, the position of training symbols
in the frame is irrelevant and arbitrarywith reference to the
above model and to our notation conventiosis,x*,y,, and
X, denote thekth user spreading sequence, ftte user code
word, the received signal vector in th¢h symbol interval and

IIl. SysTEM MODEL the transmitted symbol vector in theth symbol interval, re-

We consider the uplink of a coded direct-sequence CDMg@Pectively. The user spreading sequences are normalized such
(DS/CDMA) system with synchronous transmission over fréhat|si|* = 1 for all k. Hence, the signal-to-noise ratio (SNR)
quency-nonselective channels and Nyquist chip-shaping pul§ésiserk is given bySNRy. = |wy|?/No. The corresponding
[41]. The system is frame-oriented, i.e., encoding and decodipystem block-diagram is shown in Fig. 1.
is performed frame-by-frame and users are synchronous also @t each frame, each user encodes a sequence of informa-
the frame level. In each frame, the complex baseband equivalé@® bits into a code word* € Ci, whereCy is the code
discrete-time signal originated by sampling at the chip rate tRe0k of userk, defined over a given complex signal set (e.g.,

output of a chip-matched filter is given by [1] a PSK or QAM constellation). In this paper, we consider non-
systematic nonrecursive convolutional codes with trellis termi-
{ Y =SWX +N, Data transmission phase nation, mapped onto binary phase-shift keying (BPSK), so that
) (,) + ..
Y® = SsWX + N )’ Training phase 1In practice, for slowly varying frequency-selective channels, it is convenient

(1) to place the training phase in the middle of each frame [3].
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zrn € {—1,41}. Each code word is independently interleavedome dynamic stopping criterion might be used in order to min-
before transmission. imize the number of iterations. We leave this interesting topic
for future work.

Next, we address the estimation of the residual interference
plus noise varianco,fm the estimation of the code symbols
and the estimation of the user amplitudes used in the

Il. | TERATIVE JOINT DATA DETECTION AND PARAMETER
ESTIMATION

Without loss of generality, we assume that the user decodin
order at each iteration i = 1,2, ..., K. Decoding of usek gft SIC (2). We also address the initialization of the receiver

with training-based parameter estimation and some methods to
at iterationm in the soft-SIC recelver is based on the observed
signal sequence combine training-based and EM-based estimation. Finally, we
summarize the resulting soft-SIC receiver with joint data detec-

k-1 ~(m) tion and parameter estimation.
my 1 sty — ZSkHS'wj 20
o (™ = Ll A. Estimation of the Residual Interference Plus Noise Variance
———— ~ (m) ; 3 .
SUMF output current iteration The variance, " is unknown, and must be estimated on-line
5™ . beforeeach SISO decoding step. L& = 7,5"7’1) — Tp,n de-
Z sk S, A’(m) AE",’L ) (2) note the residual interference plus noise term in (2). A simple
j=k+1 Wy estimator foru,gm) is given by

v
previous iteration

(m)|?

“kn

A(rn) N Z

Pesme its simplicity, the motivations for using (6) to estimate

(6)

forn=1,...,N, where{w(m) :j=1,...,K} are estimates
of the user amplltudes at iteration, {a:(m) j=1,...,k—1}

are estimates of the user symbols already decoded at itera
m and{a:(m Y. j=k+1,...,K} are estimates of the user k

symbols prowded by the preV|ous iteration, since these users ard) If C ) anda, , are uncorrelated, the™ is an unbi-

not yet decoded at iteration.

ased estimator.

Decoding is performed by a SISO decoder, which in the case?2) If zx,, is i.i.d., uniformly distributed 0’{ 1,+1} (asin

of convolutional codes can be implemented efficiently by the

forward-backward BCJR algorithm [42]. Le(z,g";) | Thm =
a) be the conditional pdf of;.,. givenz;, = a, with a €
{—1,+1}. The SISO decoder for usérproduces a marginal
EXT pmf for ., given by

EXT @ o > [[p (47| one=c) @

cCCricp=a €#n

where the normal|zat|oEXT,§";)(+1) + EXT("')(
enforced. The correspondlng APP is given by

1)y=1is

APP{" (a) o p (27

Thn = a) EXT(" (@) (4)

with again the normalizatioAPPg";)(Jrl) + APPEJ}';)(—l) =
1.

Assuming that z ,, is conditionally (marginally) cir-
cularly symmetric complex Gaussian giver, ., the pdf
(7, (m) )| xx,» = a) can be approximated as

2
p (715";) Thn = a)  exp <—%> ®)
’/k

wherer™ = [|7("') z1,»|?] is the residual interference plus
noise variance, which is independentainder mild uniformity
conditions on the user codes [25].

The SISO decoders output also APPs for the information biy its estimate’;
which will be used for final symbol-by-symbol decisions in the ; easily shown that™)
last iteration. For simplicity, we assume that the total NUMbBRL variance of the procegé”” from the observation{™ = ., + ("

our case)g’(m) is i.i.d. ~ Ne(0,™), andzy n,C(m)

k,m

are uncorrelated, then the error vanancefgS’f is given

by
FE { v 2} ]17 <41/(m) + ( (m)) )

while the error variance of the ML estimator with known
Zrn IS given by

1 N
YREESS
1

~(m)
— l/k

2 1
=5 ()"

Hence, if4u,§m) /N < 1, the proposed estimator per-
forms very close to the ML estimator for known code
symbols.

3) If the complex amplitude is estimated reliably, i.e
A(m) ~ wy, and if 2y ,, is uncorrelated withi; ,, for
7é k, thenC(m) and .z, are practically uncorrelated.
Moreover under mild conditions on the user amplitudes,

for large K the residual interference ter@ﬁ ™ is asymp-
totically Gaussian [43], [25] We conclude that for large
N and K the esUmatov)k"’ performs very close to the

ML estimator for known coded symbols.

2
E

In the actual receiver implementation, the EXT and APP pmfs
(3) and (4) are calculated by using (5) whe{é’) is replaced

m)

given by (6).

is the maximum likelihood (ML) estimator for

k,n

of iterationsM is fixed for all users. In practicel/ should be whena, .. and¢{™’ are white, statistically independent, and Gaussian with

optimized according to the SNR and channel Id&dL. Also,

Tpm ~ Ne(0,1) andcfj’j) ~ Nc

(0,1/(m>)
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B. Soft Estimation of the Code Symbols Driven by the results of [25] and by the above considerations,

The (nonlinear) minimum mean square error (MMSE) sti® shall use the following soft symbol estimates

mate of symbolr, ,, given the observatiolY is given by the 332";’ — 2EXT§€";)(+1) _1 8)
conditional mean [44] ' '
which can be regarded as a “local” MMSE estimate:f, as-

2P = Blrg, | Y] suming that the posterioripmf of zy, ,, is EXT,(Ci';?(a) (even if
= 4 Pr(ap, = +1]Y) — Pr(zg, = —1]Y) it is not true!)3
=2Pr(zkn =+1|Y) - 1 (7)  c. Estimation of the User Complex Amplitudes

Letw = (w1,...,wx)? denote the vector of complex am-
plitudes to be estimated. The ML estimatewfgiven the ob-
servationY is given by

wherePr(xzy ., = a|Y) is thea posterioripmf of symbolxy, ,,
given the observatioly . We are tempted to replad®(zy ,, =
alY) by APPS";)(a) given by the SISO output at iteration

and letz{”) = 2APP{")(+1) — 1, and claim that this choice wil = argmaxlog p(Y | w) 9)
minimizes the residual interference variance and it is therefore ) » )
optimal. Unfortunately, this reasoning is incorrect. An intuitivénerep(Y | w) is the conditional pdf of the observed signal
way of seeing this is by contradiction: if the traeposteriori 9IV€Nw, given by

pmfsPr(z; ,, = a|Y) were available at some iteration, then p(Y | w)

optimal symbol-by-symbol MAP decisions could be made and

there would be no need for further interference cancellation. & ZP(Y | X, w) Pr(X | w)

Moreover, theexactcalculation of APP®r(xy. ., = a| Y)isin X N

general an NP-complete problem [1]. Therefore, if after a finite 1 2

number of iterationsn an iterative algorithm (with polynomial > Z o Z “xp <_FO z_:l [yn = SAnw] )
complexity in K) obtains exact values f@r(xy ,, = a|Y) "
the NP-completeness would be violated. Hence, we conclude
thatAPPZ';)(a) # Pr(ai,, = a|Y), for anyfinite number of where we have defined the diagonal matrix, =
iterationsm. diag(#1,n,...,2x.») and where we have used the fact

Interestingly, the above “nonlinear MMSE argument” hathat the channel inpuX is independent of the channel ampli-
been used in several papers (e.g., [22], [23], [8], [18]), somgdes, so thaPr(X | w) = Pr(X) = uniform on the Cartesian
times with claim of optimality. On the contrary, by using groduct of the code bookd x - - - x Cx and zero outside, since
rigorous derivation based on factor-graphs and on the appliezach usek selects its code word with uniform probability on
tion of the sum-product algorithm, it can be shown that [25]: its code book’;, and independently of the other users. From

1) Even for perfectly known amplitudes and SISO inpufl0), it is clear that direct ML estimation o is infeasible in

variances (i-e-@,(cm) = wy, and ,;Igm) - ,,Igm)), the any practical case, as it has IgompIeX|ty proportional to the total
number of user code wordg, _; |Cx|.

Now, assume that the estimat&) and the APP
Pr(X|Y,w({™) are available at iterationn. Then, we
€an produce an updated estimaté™+1 for next iteration

(m) by following the EM approach. In the language of the EM
Thn = a} = Mg 0 algorithm [31],Y, X and{Y, X} play the role ofincomplete
missingand completedata. The EM update consists of com-

Whefeui",? is a nonnegative quantity that may depend oputing the expected log-likelihood function of the complete
k,n and on the iteration index.. data conditionally on the incomplete data and on the current

2) By using EXT-based instead of APP-based symbol gdarameter estimate (E-step), and maximizing the result with
timates, i.e., by usin@é’") — 2EXT§€’")(+1) — 1, the respecttothe parameter (M-step) [31]. In our case, the complete

resulting residual interference term is conditionally ur@ata log-likelihood function is given by

xleCy xKeCk

(10)

residual interference terrzgi,gf';) = Zz(:ﬁ) — Trpn in (2)
when usingz{"™ = 2APP{"™(+1) — 1 is conditionally
biased and the bias tends to cancel the useful signal, i.

E ¢

biased, i.e.E[¢," | x1,,] = 0, and the overall soft-SIC logp(Y, X |w) =logp(Y | X, w)
algorithm attains better performance than its APP-based N

version. Remarkably, this effect is not visible for small -1 Z 1V — S, w2
channel load but, a&’/L increases, the difference be- No #=~

tween APP-based and EXT-based soft-SIC schemes is 2

1
- H H
more and more evident [27]. = FORe{r w}— oV Rw (11)

In.passmg, we notu(:g))also that a biased residual 'merference. M [25), expression (8) is derived as a direct consequence of the application
plies thatz;, , and(, .’ are correlated (even for perfect ampli-of the sum-product algorithm, without any heuristic motivation based on MMSE

tude estimation). Hence. the variance estimator (6) is asymp@timation. The fact that EXT-based algorithms perform better than APP-based
! algorithms just puts in evidence the power and generality of the sum-product

ically optimal fOI large/N, K only when the symbol soft esti- approach to statistical inference problems on Bayesian networks (see [45] and
mates are obtained from EXT pmfs. references therein).
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where we define the vector readily available from the SISO outputs. On the other hand,
z1 sy, thanks to the product form, the exponential complexity of the
N N | 2o sH moment computation is reduced to linear. In fact, the moments
H 2,n"2 Yn X
r= Z X 8%y, = Z : (12) of the product pmf are given by
n=1 n=1 . m m
Sy Frn = AP (+1) - APPY) (-1)
and theX x K matrix = 2APP{(+1) — 1
N — 1, for (k,n) = (4,4
R=3 x,87s4, (13) it = {xk nige oo - @0
n=1 ’ 7’

Finally, the proposed approximated EM updating step consists
of computing (18) wher® andr are given by (15) and by (16)
R, = { N, N fori=j when replacing the true moments (17) by their approximations
“J sts; > TinTjn, fori#j (20).
The complexity of (18) is then dominated by the matrix in-
verseR !, which must be computed at each iteration. A sub-

with (4, j)th element

By using (11), we obtain the E-step in the form

Q (w, x?v(m)) =E [logp(Y, X|w)|Y, W(m)} optimal M-step that does not require a matrix inverse can be ob-
- (m) tained by noticing that, under mild conditions on random inter-
= Z Pr (X 'Y, w ) logp(Y, X |w) leaving and on the uniformity of user codes, the averaged sym-
X bolszy ,, are symmetrically distributed (their distribution is in-
= iRe{fHW} _ inRw (14) duced by the noise and by the random choice of the user code
No = 7 No words over the code books). Moreovey,,, ands;,, are weakly
where we leff = E[r|Y, %] andR = E[R|Y,w(™]. correlated for # j. Then,(1/N)R = I for large block length
These are given by N. Hence, under these conditions (18) can be approximated by
N Fomt _ o 21
r=3" x,8%y, (15) W N© (21)
n=1 Notice that both (18) and (21) are directly computed from the
and by SUMF outputs, since defined in (15) depends on the observed
for i — i signalY only through the SUMF outputg’y.,.
-~ , ori=j
S; 8§ 2Zip=1TinTyn, U D. Initialization and Combining With the Training Phase

whereX,, = diag(Z1,,--.,Tx,») andwherery ,; andzz ,7;¢  The overall iterative soft-SIC algorithm needs a sufficiently
denote the first and second moments of the jaipbsterioripmf  reliable initial estimatex(® of the complex user amplitudes.
Pr(X | Y, w(™), given by Otherwise, for completely unknowsw, the SISO decoders at
- . (m the first iteration yield APPs very close 192, i.e., 2y, ~ 0
Lhn = Z“" Pr (X Y, W )) for all £ andn. This yieldsr ~ 0 andR. :%I, which in turns
X yields w(1) ~ 0, so that the receiver never “bootstraps” and
ThnTid = ) ThnTje Pr(X Y, VAV(m)) - (17) remains stuck at the “zero” fixed point.
X For the sake of initialization, a joint ML estimate of the com-
By noticing that (14) is a quadratic form iw and thatR is plex amplitudes is obtained from the training phase. This is
nonnegative definite, the M-step is readily obtained as readily given by [44]

} -1
VAV(rn,—l—l) = arg IHaXQ (W’W(nl)) _ R_lf. (18) VAV(t) = (R(t)) r(t) (22)

The above procedure has still complexity exponentialin wherer® andR(") are given by (12) and by (13), respectively,
since the computation of the moments (17) is equivalent to tigen replacingV by 7" and the code symboais; ,, by the known
marginalization of the joint pmPx(X|Y,w(™), which has yaining symbolsz") . If the training sequences are mutually
complexity exponential iK. Then, we shall apply the aboveorthogonal ie such thaK )7 X = 7T, we obtairR (") =

EMdstep ‘]:Ior?ally", i'?" leF:Eplacindg%()d( LY,:v(’;i)Sgydthe dTI and no matrix inverse is needed in (22). It can be shown that
product of the margina S produced by the €COA@®s choice also minimizes the estimation error variance [46].

atthe end of iteratiom. Namely, we use the approximation Then, if a set of mutually orthogonal training sequences exists,

X KN (m) this choice should be preferred.
PI‘(X|Y7W(m)) ~ [ [T APP. (@xn)-  (19)  The receiver is initialized by letting’® = w®. Then, at
k=1n=1 iterationsm = 1,2,..., the receiver exploits the updated es-

As shown in the previous section, the APPs do not coitimatew(™ provided by the EM step (18) by combining it in
cide in general with the true marginals of the joint pmf

PY(X_ |'Y,w(™). However, the utility of theapp_roximation _symbol alphabet and on the training length which must be> K. See [46]
(19) is twofold: on one hand, the product pmf in the LHS isnd references therein for more details.

4The existence of such set of training sequences depends on the training
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some way with the training-based estimatde investigate the and wheren;, ~ N¢(0,(No/N)B3) is the kth component of
following two methods for combining the training phase witfR ~15, with
the EM update. N

1) Mixing Method: For m = 1,2,..., the “local” EM 32 = iz FAE
estimation described above is applied to the incomplete data kTN ot kol
{Y,Y®Y with missing dataX, by treatingX(® as known -
parametérs. The same result is obtained by including thew, our goal is to obtain a combined estimator in the form
known training symbols in the missing data and by defining s(m)
their marginal pmfs as\PP}" (a) = 1if a = 2} and0 if Wh,comb = @
a # x;ﬁn so that for training symbols we havg ,, = x;ﬁn where the coefficients;, andb,, are chosen in order to minimize
[29]. After straightforward algebra, completely analogéus e error variance subject to the unbiased constraint, i.e., they
the derivation of the previous section and not reported here i€ the solution of
the sake of space limitation, we obtain tinéxingestimator as

sy + big” 27)

_ , ®|?
minimize FE ‘awk + by, ‘
W = [R + R(t)} h (1‘ + r(t)) : (23) subjectto acrk + by =1

mix

Sincen), and 77,(:) are mutually independent (they depend on

e e ey S, e il ndepedent e samaeand ¢ e cea
W = w + 70 with n® ~ Ne(0, (No/T)D). In particular, Thd training phases), we obtain easily the solution of the above

. ! ; . I
the training-based estimatér® is unbiased. problem as
Now, from (15) and (1) we obtain ap = a—"T
G+ 55
N L2
r= Z A’,,,SH(SA’,,,W +n,)=Rw+n b, = 21\77’:2 (28)
n=1 g + § O

N = . One last problem is represented by the fact thatepends on
whereR’N: Y one1 XSS, andn ~ N (0, NoR”) with  the unknown code symbols ... Then, an estimate af;, can
R” =3""_ X,SS"X,. By using this into (18), we have be obtained as follows. We notice that
B e

~(m) _ p-1lpn/ —1
w =R7Rw+R"7. (24) —|%rn|, forsign(Zxn) # Tin

SinceR # R’ unless the code symbols are perfectly known, theince sign(<x ) is the maximuma posteriori symbol-by-
result of EM is biased. For the sake of simplicity, we assume thgtmbol decision on the code symbeo}.,, based on the a
N is sufficiently large so that the following approximations holgbosteriori pmfAPch";?(a) output by the SISO decoder at
iterationm, for IargeN the following approximation holds
R ~ NI 1 N
N N )
TN ~ ~ g ~ (1 — 26k)— |-i'k,n| (29)
R’ =~ diag <z:1 T1nELn,- -, z:l 371(,n371(,n> N nz=:l

N N whereey, is the symbol error probability (on the coded symbols,
R” = diag Z |21 nl?, ..., Z |Z 5. |? (25) not on the information bits!) at the output of the SISO decoder
n—1 ne1 for userk at iteratiorn. If the residual interference plus noise

. . - rocess(\"” is Gaussian with variance.™, the error prob-
(this follows by the fact that, under mild conditions, the out-of- .. . . (m) .
: ; L : ability ¢ is a known function of/, ', determined by the user
diagonal terms are normalized empirical correlations betweén . )
) . codeCy.. This can be pre-computed and stored in a look-up table,
uncorrelated zero-mean sequences, which vanish for d)ge . : . :
. . . : . and an estimat®, of ¢;. can be easily obtained from the estimate
By using (25) in (24), we obtain the biased EM estimate of usey,,) . . ) .
U, given by (6). Finallyx; can be approximated by replacing

k amplitude as ex by & in (29).

Remark: We provide a qualitative and intuitive discussion on
the behavior of the mixing and combining methods.
The mixing method suffers from bias in the case of |akgd.
and7’/N <« 1 (which is clearly the most interesting case, as it
1 N is usually desirable to maximize the channel load and minimize
O = Z Thndkn the length of t.he training phase). In fact, suppose that at'lteratlon
n=1 m = 0 the signal at the input of each SISO decoder is “very

ﬁ),(cm) = agwy, + N} (26)

where

- _ . _ g _noisy” since the interference has not been removed yekaiid
5The efficient use of the available training symbols in addition to some blind

parameter estimation technique is a problem common to nsemyi-blind S large. Then, the averaged symbols,, output by the SISQ .
schemes [47]. decoders are all close to zero. Assuming orthogonal training
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sequences (the best case), the mixing method yRIIR® ~ T
(N+T)Lt ~ 0andr® = T'w+noise. The resulting estimator Y “Iesrimauo ----------

is ‘/Q‘

a T .
Whix ~ ——W -+ nhoise
nmx N +T

which is clearly biased. In particular, /N < 1, the bias
might prevent the whole receiver to bootstfap.
On the contrary, the combining method (assumigdinown)

provides an unbiased estimate at each iteration. At the first
2 (m)

erations, whery, ~ 1/2, thenay, ~ 0,b, ~ 1 andw,,_,; ~ :

~ (t) . I .. _ . . .

wit) i.e., only the result of training-based estimation is used. / SISO g

the soft-SIC cleans-up the signal from interference gnbe- e ;ij— > SIS0
comes small (converging to the single-user performance), th 1 X
|-ik,n| ~ 1o~ /3’% ~ 1 anda; ~ N/(N+T),bk ~ T/(N+

T’). These limiting values are precisely the maximal-ratio com-

A . . . . - ., Fig. 2. Block diagram of the proposed soft-SIC receiver with iterative EM
b'n'ng coefficient [41] for estimatingr from the unbiased NOISY channel estimation (only two iteration stages are shown for simplicity). APP

observationsy + 7" andw + 7, with »(*) and 7 indepen- and EXT denote soft code symbol estimates obtained from APP and EXT SISO
dent, Gaussian, with covarianc(eNo/T)I and (NO/N)I, re- outputs. The “IC” blocks denote interference cancellation and matched filtering.

spectively. Comparisons between the mixing and the combining

methods are provided in Section IV. * If m = M, make symbol-by-symbol decisions on the in-
formation bits APP outputs of the SISO decoders, other-
E. Algorithm Summary wise letm := m + 1 and go back to the user loop.

Fig. 2 shows the block diagram of the proposed receiver. The
users are ranked in decreasing order of their estimated signal-to-

. . . IV. RESULTS
interference ratio (SIR), given by

In order to demonstrate the performance of the proposed
& soft-SIC receiver, we considered the following simulation
k setting, loosely inspired by the UMTS-TDD system [3]:
E#k |SI£IS].|2 e Spreading factorl, = 16, QPSK chips with “short”
random spreading sequences. A new sekafequences
Without loss of generality, we assume that the decoding orderis 'S 9enerated randomly and independently with i.i.d. ele-
k=1,2,...,K. The algorithm is initialized by lettingr(®) = ments at each frame. Obviously, the bit error rate (BER)
is averaged over several frames so that the effect of the
random sequences is smoothed.
» The user code is the same for all users. For the sake of
simplicity, we chose the four-state ratg2 convolutional
code (CC) with generatofs, 7)g (octal notation [41]).
Code block length?V' = 2000 coded symbols, corre-

» Compute théth SISO decoder EXT and APP outputs and sponding to 1000 information bits per frame.

. . 5 _ * K = 32 and40 users, corresponding to channel loads of
compute the soft interference estlmééén according to 2.0 and 2.5 users per chip, respectively

(8) and the average symbai, , accordijng to (20).  Training sequence lengtis = 4 and32 symbols.
* End symbol loop. « Users have the same received power. The channel com-
* End userloop. __ _ plex amplitudes are given by, = RE,ci® where
» Parameter estimation update: If_the mixing method IS Ris the user coding rateR = 1/2 in our case),E, is
used, compute the u_p(_jated amphtgde estimate according the energy per information bit ang, is a uniformly dis-
to (23). I_f the comblmng method is used, compute the tributed random variable ovér 7, ], independently gen-
EM amplitude estimate according to (18) and the updated erated for each user.
estimate according to (27). « We considered a fixed maximum number of SIC iterations
M =10, in all cases.

SInterestingly, in [29], training symbols are used in an iterative joint decodgr these examples we considered onIy the equal-rate equa|_

and channel estimation scheme according to the mixing method. The analhss for th ke of limitati db this i
in [29] is uniquely based on propagating the variances of residual interfere gWwer users for the saxe of space limitation and because this is a

and of channel estimation errors from one iteration to the next, and does not tak@rst-case for iterative soft-SIC decoders [14], [15]. In [25], by

into account the bias. Unfortunately, the interference cancellation algorithm@ging the technique cdensity evolutionwhich is now a stan-
[29] is based on APPs, and hence, it is plagued by biased residual interfere{t;

Ce H H 1 “ H n
[25], and the mixing method yields biased channel estimates (as outlined hetrt rd tool for_ the analysis of |terat|ve- message passing al_go'
Therefore, the results of [29] are questionable. rithms [45], it is shown that the soft interference cancellation

2

@Y

w® 4" = 0 for all k andn andm = 0. Then, we have:
» User loop: Fork = 1,..., K, do
e Symbol loop: Fom = 1,...,N, do
» Compute the soft-SIC signal samples according to (2) and
the estimated residual interference plus noise variance
19,2"’) according to (6).
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o Perfect knowledge, K=40, L=16, CC(5,7) o T=32 (Training only), K=32, L=16, CC(5,7)
10 T 10

| IANGA R | RN

10’8 10%
N N
: N . A
<] @
104 Single-user 10* Single-user
+  Iter#l +  lter#l
5 o 5 o i
-3 L *x ter. -3 H er.
10 B ler#d \\ 10 a e N \
= Iter# 8 Jterd#S \
o Iter#6 ©  Iter#6
1w o Iter#7 108 H o Her#7
a  Tter#8 & lter#8
4 lter#9 4 Tter#9
S v ler#io \\ St e tersio \\\
10 T 10 -
-2 0 2 4 6 8 -2 0 2 4 6 8
Ey/N; (dB) Ey/No (dB)
Fig. 3. K = 40,L = 16,N = 2000, CC (5,7)s, perfect channel Fig.4. K = 32,L = 16, N = 2000, CC(5,7)s, training-only estimation
knowledge. with T = 32.
. . s
algorithm considered here at targ®£R = 107, with perfect , =32 (rixing), K=32, L=16, 05D
channel parameter knowledge, C% 7)s user codes and equal 10 !
power users attains channel load of three users/chip. The e ——, ?
\ W\i‘

quiredF; /Ny is 6 dB. Fig. 3 shows the BER curves fir = 40 10"
users and perfect channel knowledge (all BER curves show \ \\\j\\\
worst user performance, which in the equal power case is u:

ally, but not necessarily, obtained by the user decoded first). T R \ \\\_\ ™
AN

load in this case id0/16 = 2.5, below the limit of 3 predicted
by the analysis of [25]. FoE, /Ny, > 5 dB and 10 iterations A

the single-user BER performance is achieved for all users. C 10* Fr= Single-ser

viously, for smallerK the convergence to the single-user BEF | \

occurs with less iterations and at lowgg /N, threshold. 10 o lertd \
Figs. 4—6 show the BER of the system with= 32 users and | i

T = 32 training symbols per frame, with training estimatior § lerds \\\

only, and EMttraining estimation with mixing and combining o7 Lo

methods, respectively. Training-only estimation prevents the | 2 0 2 e 6 8

ceiver to achieve the single-user BER, since interference cannot
be canceled completely because of the estimation errors whigh 5. x = 32, L = 16, N = 2000, CC(5,7)s, EM-+training estimation
do not vanish with iterations. The combining method showgth T = 32 and the mixing method.

faster convergence than the mixing method. This confirms the

qualitative bias analysis made in the remark of Section IlI-C T=32 (combining), K=32, L=16, CC(5.7)

However, for such “light” load the difference between the two 10°

methods is not very significant. —_
Figs. 7-9 show the BER of the system with = 32 users 1o \ N \\
andT = 4 training symbols per frame, with training-estima ) 4
tion only, and EMrtraining estimation with mixing and com- \ \\ \ \
N3

bining methods, respectively. With only four training symbols o3
the degradation of system with training-only estimation is vel &
evident (notice that fof’ = 4 and K = 32 it is obviously #

10

not possible to make the training sequences mutually orthc T e \\ \
onal, and this contributes to poor channel estimation). Also, t ol frer#2
better convergence properties of the combining method ver: 7 llerkd \\\
the mixing method are more evident: the combining method Wil o e
tains the single-user BER &, /Ny = 4 dB, while the mixing 4 lerds \\
method attains it ak);, /Ny = 6 dB. o7 [ ter#10
2 0 2 4 6 8

71t is worthwhile to point out here thai = 32 users with spreading factor Ey/No (08)

L = 16 is a load already far beyond any conventional practical CDMA system
[2], [3]. We call this load “light” since it is far from the threshold load predictedrig. 6. K = 32,L = 16, N = 2000, CC(5,7)s, EM+training estimation
by the analysis of [25]. with 7' = 32 and the combining method.
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T=4 (Training only), K=32, L=16, CC(5,7) T=32 (mixing), K=40, L=16, CC(5,7)

102 \\ \\ \\ 102 \
10 N 103 N
é \\ é \
-4 -4
10 Single-user 1o Singli-user
+  Iter#l +  Iter#
x  Ter#2 % lter#2
S *  Tter#3 S Ll x  Iter#3
10 o Iter#4 N N 10 @ lterid N
s Iter#5 \ s lter.#5 \
©  lter.#6 e lter.#6
10 ¢ lter#7 108 H o Iter#7
a  ter.#8 &  [ter#8
4 Jter#9 4 Her#9
7 v lter#10 3 v Iter#10
107 L 10° T
2 0 2 4 6 8 -2 0 2 4 6 8
Ey/N, (dB) Ey/N, (dB)

. e o
Fig. 7. K = 32,1 =16, N = 2000, CC(5,7)s, training-only estimation i 1o 1 _ 49 1 = 16, ¥ = 2000, CC(5, 7)s, EM-+training estimation

with 7" = 4. with 7" = 32 and the mixing method.
o T=4 (mixing), K=32, L=16, CC(5,7)
10
o '\ E_‘.\ o T=32 (combining), K=40, L=16, CC(5,7)
10? \\ \\ 1! \ \\\\\\§
10-3 \\ \\ \ \\\ 10'2 ™,
-
; SN O
107 Single-user 107 N
+  Tter#l &
S| v e \ \\ S AN \\\ \
L lte::#4 ‘; 10 " IStie::g;i,-user
! llerds X Terd2
. o Iter#6 \ S L » lterd#3
108 ¢ lter#? 10 o lter#d A
4 lter#t & Jter#5
*_lirsio o lurs
- g 1 e
2 0 2 BN, B 4 6 8 D et \\
4 v Iten#l_()
10
Fig.8. K = 32,L =16, N = 2000, CC(5,7)s, EM+training estimation 2 0 2 Ey/No (dB) ¢ ¢ ’
with 7" = 4 and the mixing method.
Fig.11. K =40,L =16,N = 2000,CC(5,7)s, EM+training estimation
o T=4 (combining), K=32, L=16, CC(5,7) with 7' = 32 and the combining method.
e
ot o YQ"?%\ In order to put in evidence that the bias in the mixing method
\s\ \ might prevent the receiver to converge to the single-user BER
10° ™ while the combining method still works, we consider the case
\ \\'\ \\ K = 40 andT = 32 (again, orthogonal training sequences are
. 10 A not possible here). Figs. 10 and 11 show the BER of this system.
a ) \\ \ \ The mixing method does not converge for the rang&nfN,
10 — Single-user considered in our simulations, since the estimated amplitudes
i {:gig after the first iteration are biased by a facteB2/(2032) =
107 1] o {,‘:;ﬁ y 0.0157, which prevents cancellation, and the received does not
o ﬁerizg \ bootstrap. On the contrary, the combining method is still able to
| . (G & . . . .
R et converge fotE, /Ny > 7 dB. By comparing Fig. 3 with Fig. 11,
07 L= ng:#llo we can quantify the degradation due to unknown channel am-
2 0 2 BN, @) 4 6 8 plitudes: withAM/ = 10 iterations this is about 1.6 dB BEER =
0 10-%,0.8 dB atBER = 10~® and0.0 dB atBER < 4 - 107

Fig.9. I =32,L = 16, N = 2000, CC (5, T)s, EMtraining estimation since in this BER range both systems achieve the single-user
with T' = 4 and the combining method. performance.
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V. CONCLUSION

We proposed a low-complexity iterative soft-SIC algorithnﬁg)
for joint data detection and channel parameter estimation, bal
on SISO single-user decoders and soft interference cancellation
The channel parameters estimates are updated along withR
receiver iterations. The updating operation has the form of a
likelihood function expectation of followed by maximization,
i.e., itis formally equivalent to the basic EM step.

Even though similar algorithms can be found (with minor 2]
variations) in several other works (see the discussion in Sectiorg
1), here we investigated in the details several new important as{3]
pects, namely: a simple and efficient way to estimate the residu?jff]
interference plus noise variance at the SISO inputs; the issue
soft interference estimation based on EXT pmfs versus the conis]
ventional approach of using APPs; the correct formulation of
EM estimation with channel coding, and the key approximation [6]
to bring complexity from exponential down to polynomial in the
number of users; the use of training-based estimation together
with EM updating. In particular, we provided a new method 7]
for combining the unbiased channel estimates provided by ML
training-based estimation with the biased estimates provided b){e
EM. The new method (referred to as “combining”) provides ]
much better convergence of the overall receiver than the more
conventional method consisting of treating training symbols and(€]
unknown code symbols together (referred to as “mixing”).

The full investigation of the optimal tradeoff between training [10]
symbols fractior /N and channel load’/ L is out of the scope
of this paper. However, from the simulation results shown herem]
we can get some conclusions on the overall benefit of the pro-
posed approach. With our receiver, we camfit 40/16 = 2.5
users/chip with coding rat® = 1/2 bit/symbol atBER =
103, with actual channel estimatioff’(= 32 training sym-
bols out of N = 2000 coded symbol per frame) and nonre-
cursive four-state convolutional codes. The requiEsdN, is
about 6.7 dB, i.e., us&iNR = 3.7 dB, with 10 iterations (10
SISO decoding per user per frame). In UMTS [3], [2], con-[14]
ventional SUMF receivers are envisaged, but very complex and
powerful user channel codes are considered (either turbo-codgs;
or 256-state convolutional codes). Consider, e.g., a conventional
system with turbo-codes of ratB = 1/2, optimized inter- 16]
leavers of size 1024 [26] (corresponding to coded block Iengtlg
N = 2048, similar to our case), recursive systematic four-state
CCs with generatorél, 5/7)s and eight full iterations, corre- [17]
sponding to 16 SISO decoding per user per frdme. [18]

In the conventional system, we assume perfect channel es-
timation since channel estimation is much less critical than in
the soft-SIC system. The turbo-code achieldR = 10—° [19]
at SINR = —1 dB. The SINR at the output of the SUMF for
equal-power users and random spreading sequences, in the Iir%l
for K, — oo with K/L = « [48], is given bySINR =
SNR/(1 + «SNR). Then, the limit load of the conventional
turbo-encoded system is = (1/SINR) — (1/SNR). By let-
ting SINR = —1 dB (as required by the target BER perfor-
mance) andNR. = 3.7 dB (as in the soft-SIC system), we [22]

(1]

(12]

[13]

[21]

8We allow more complexity in SISO decoding for the conventional system (1623]
SISO decoding steps instead of ten) since our system requires also interference
cancellation, which involves some additional complexity.
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obtaina = 0.83. Even by lettingSNR — oo, the maximum
ssible channel load is not larger thar= 1.26. We conclude

t the proposed receiver witlctualchannel estimation is able

at least) double the cell capacity at roughly the same com-
l%(ity of the conventional turbo-encoded system.
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