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Successive Interference Cancellation With SISO
Decoding and EM Channel Estimation
Mari Kobayashi, Joseph Boutros, Member, IEEE, and Giuseppe Caire, Member, IEEE

Abstract—We derive a low-complexity receiver scheme for joint
multiuser decoding and parameter estimation of code division mul-
tiple access signals. The resulting receiver processes the users se-
rially and iteratively, and makes use ofsoft-in soft-outsingle-user
decoders, ofsoft interference cancellationand of expectation-maxi-
mizationparameter estimation as the main building blocks.

Computer simulations show that the proposed receiver achieves
near single-user performance at very high channel load (number of
users per chip) and outperforms conventional schemes with similar
complexity.

Index Terms—Interference cancellation, joint data detection,
parameter estimation.

I. INTRODUCTION

A MONG THE SEVERAL multiuser detection schemes
proposed for code division multiple access (CDMA) [1],

serial and parallel interference cancellation (SIC and PIC) are
particularly attractive because they process directly the output
of a bank of single-user matched filters (SUMF). The receiver
front-end is identical to that of conventional detection. There-
fore, these methods can be seen as an “add-on” post-processing
to enhance the performance of a conventional base-station
receiver when particularly high channel load is needed, and
can be applied easily to eithershortor longspreading sequence
formats [2]–[4].

The main performance limitation of SIC/PIC schemes are:
1) error propagation caused by feeding back erroneous symbol
decisions and 2) imperfect interference cancellation due to non-
ideal knowledge of channel parameters (e.g., the complex am-
plitudes and delays of the users’ multipath channels). In this
work, we propose a receiver scheme which handles successfully
both problems.

SIC is both simpler and more robust than PIC with respect to
error propagation, since users can be ranked according to their
signal-to-interference plus noise ratio (SINR) and decoded in se-
quence [5]–[8]. Hence, we focus on SIC schemes. In early works
[5], [6], SIC is applied to uncoded transmission and hard deci-
sions are used at each stage to remove the already detected users
from the received signals. In order to prevent error propagation,
the use of soft (orpartial) interference cancellation and itera-
tive SIC schemes has been proposed in different forms and by
different authors [8]–[10]. More recently, the SIC approach has
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been combined with channel coding and soft-in soft-out (SISO)
decoding [11]. The number of works in this direction is over-
whelming. Without the ambition of being exhaustive, we refer to
[8], [12]–[23], and references therein.A common feature of these
algorithms is that single-user SISO decoders provide at each iter-
ation an estimate of thea posterioriprobabilities (APP) for the
user code symbols, which are used to form a soft estimate of in-
terference to be subtracted from the received signal. In this way,
the contribution of a user is effectively subtracted from the signal
only if its symbol decisions are sufficiently reliable.

A unified framework to iterative multiuser joint decoding
based on factor-graphs and sum-product algorithm [24] is
provided in [25]. In this framework, almost all algorithms
previously proposed (notably, those of [12] and [23]) have been
rederived in a simple direct way. Moreover, as a consequence
of the sum-product approach, it is found thatextrinsic (EXT)
probabilities [26] rather than APPs should be fed back to form
the soft interference estimate. As confirmed experimentally
by [27], APP-based soft interference cancellation yields a
biased residual interference term which tends to cancel the
useful signal, and the APP-based algorithms of [12] and [23]
attain a worse overall spectral efficiency than their EXT-based
counterparts derived and analyzed in [25].

In order to reduce parameter estimation errors, iterative SIC
schemes can be naturally coupled with iterative parameter es-
timation in order to (hopefully) improve the estimates with the
iterations, as long as the signal is “cleaned-up” from interfer-
ence [28]. In [29], the tradeoff between the number of users per
chip (channel load) and the amount of training symbols is inves-
tigated in a general iterative joint decoder which re-estimates the
channel parameters at each iteration.

We propose a low-complexity iterative soft-SIC algorithm for
joint data detection and channel parameter estimation. The main
building blocks of our receiver are SISO single-user decoders,
soft interference cancellation stages, and a channel parameter es-
timation updating step which is formally equivalent to one step
of the expectation-maximization (EM) algorithm [30], [31]. The
key idea toachievepolynomialcomplexity in thenumberofusers
is to apply EM “locally”, i.e., instead of using the truea poste-
riori distribution of the missing data given the observation and
the current parameter estimate, we use the product distribution
induced by the a posteriori marginal (symbol-by-symbol) prob-
abilities output by the SISO decoders at each receiver iteration.

We restrict our treatment to synchronous CDMA with
frequency nonselective propagation channels. Users are syn-
chronous at the chip, symbol, and frame level, and encoding and
decoding is performed frame by frame. We assume also that the
channel parameters remain constant over each frame. The reason
for adopting this simple model is twofold. On one hand, this
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model allows the development of the algorithm in a simple and
clear way. On the other hand frame-synchronous transmission
with piecewise constant channel parameters is quite realistic
in systems like universal mobile telecommunication system
(UMTS) division duplex (TDD) [3], applied to indoor and
picocells with slowly moving user terminals. Generalization
to asynchronous transmission and continuously time-varying
multipath channels is left as an interesting topic for future work.

Related work can be found, e.g., in [32] (see also [31] and
references therein), where EM channel estimation is applied
to SIC in an uncoded system. In [33], joint parameter estima-
tion and data detection in a multiuser multipath environment
is tackled by using an alternating maximization strategy and
EM is used to solve the parameter estimates updating step. In
[34]–[36], the EM approach is applied to the joint data detec-
tion and parameter estimation in a single-user space–time coded
system. In [37], the SAGE algorithm [38] is applied to joint
MAP symbol-by-symbol detection and parameter estimation in
an asynchronous CDMA system. The algorithms obtained in
[37] have exponential complexity in the number of users as the
SAGE is not applied “locally” (as opposed to what we do here).
Classical references on the application of EM in communica-
tions problems are [39], where EM is applied to parameter es-
timation in digital receivers, and [40], where several iterative
multiuser schemes for uncoded CDMA (with perfectly known
parameters) are derived as applications of EM and SAGE.

The paper is organized as follows. In Section II, the syn-
chronous CDMA signal model is presented. In Section III, we
derive the proposed receiver structure. In Section IV, we present
some numerical results, and in Section V, we summarize our
conclusions.

Notation conventions:

• Let be a matrix, then and (or equivalently
) denote the th column, the th row and the
th element of .

• indicates that the random vector is
complex circularly symmetric jointly Gaussian with mean

and covariance .
• The superscript indicates Hermitian transpose.
• indicates that and differ by a multiplicative

term.
• indicates that and differ by an additive term.
• Probability density functions (pdf) are denoted by and

probability mass functions (pmf) are denoted by .

II. SYSTEM MODEL

We consider the uplink of a coded direct-sequence CDMA
(DS/CDMA) system with synchronous transmission over fre-
quency-nonselective channels and Nyquist chip-shaping pulses
[41]. The system is frame-oriented, i.e., encoding and decoding
is performed frame-by-frame and users are synchronous also at
the frame level. In each frame, the complex baseband equivalent
discrete-time signal originated by sampling at the chip rate the
output of a chip-matched filter is given by [1]

Data transmission phase
Training phase

(1)

Fig. 1. Coded synchronous DS/CDMA system (� denotes interleaving,
different for each user).

where

• and are the arrays of received
signal samples in the data and training phases, respec-
tively.

• and are the corresponding ar-
rays of noise samples, assumed complex circularly sym-
metric Gaussian independent identically distributed (i.i.d.)

.
• contains the user spreading sequences by

columns.
• contains the user complex am-

plitudes .
• is the array of transmitted code symbols.
• is the array of transmitted training symbols

(known at the receiver).
• and denote the code block length and the

training sequence length (in symbols), the spreading
factor (number of chips per symbol) and the number of
users, respectively.

The total frame length in symbols is equal to . Since
the channel amplitudes remain constant over the whole frame
and the system is synchronous, the position of training symbols
in the frame is irrelevant and arbitrary.1 With reference to the
above model and to our notation conventions, and

denote the th user spreading sequence, theth user code
word, the received signal vector in theth symbol interval and
the transmitted symbol vector in theth symbol interval, re-
spectively. The user spreading sequences are normalized such
that for all . Hence, the signal-to-noise ratio (SNR)
of user is given by . The corresponding
system block-diagram is shown in Fig. 1.

At each frame, each user encodes a sequence of informa-
tion bits into a code word , where is the code
book of user , defined over a given complex signal set (e.g.,
a PSK or QAM constellation). In this paper, we consider non-
systematic nonrecursive convolutional codes with trellis termi-
nation, mapped onto binary phase-shift keying (BPSK), so that

1In practice, for slowly varying frequency-selective channels, it is convenient
to place the training phase in the middle of each frame [3].
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. Each code word is independently interleaved
before transmission.

III. I TERATIVE JOINT DATA DETECTION AND PARAMETER

ESTIMATION

Without loss of generality, we assume that the user decoding
order at each iteration is . Decoding of user
at iteration in the soft-SIC receiver is based on the observed
signal sequence

(2)

for , where are estimates

of the user amplitudes at iteration
are estimates of the user symbols already decoded at iteration

and are estimates of the user
symbols provided by the previous iteration, since these users are
not yet decoded at iteration.

Decoding is performed by a SISO decoder, which in the case
of convolutional codes can be implemented efficiently by the
forward-backward BCJR algorithm [42]. Let

be the conditional pdf of given , with
. The SISO decoder for userproduces a marginal

EXT pmf for , given by

(3)

where the normalization is
enforced. The corresponding APP is given by

(4)

with again the normalization
.
Assuming that is conditionally (marginally) cir-

cularly symmetric complex Gaussian given , the pdf
can be approximated as

(5)

where is the residual interference plus
noise variance, which is independent ofunder mild uniformity
conditions on the user codes [25].

The SISO decoders output also APPs for the information bits,
which will be used for final symbol-by-symbol decisions in the
last iteration. For simplicity, we assume that the total number
of iterations is fixed for all users. In practice, should be
optimized according to the SNR and channel load . Also,

some dynamic stopping criterion might be used in order to min-
imize the number of iterations. We leave this interesting topic
for future work.

Next, we address the estimation of the residual interference
plus noise variance , the estimation of the code symbols

and the estimation of the user amplitudes used in the
soft-SIC (2). We also address the initialization of the receiver
with training-based parameter estimation and some methods to
combine training-based and EM-based estimation. Finally, we
summarize the resulting soft-SIC receiver with joint data detec-
tion and parameter estimation.

A. Estimation of the Residual Interference Plus Noise Variance

The variance is unknown, and must be estimated on-line
beforeeach SISO decoding step. Let de-
note the residual interference plus noise term in (2). A simple
estimator for is given by2

(6)

Beside its simplicity, the motivations for using (6) to estimate
are:

1) If and are uncorrelated, then is an unbi-
ased estimator.

2) If is i.i.d., uniformly distributed on (as in
our case), is i.i.d. , and

are uncorrelated, then the error variance of is given
by

while the error variance of the ML estimator with known
is given by

Hence, if , the proposed estimator per-
forms very close to the ML estimator for known code
symbols.

3) If the complex amplitude is estimated reliably, i.e.,
, and if is uncorrelated with for

, then and are practically uncorrelated.
Moreover, under mild conditions on the user amplitudes,
for large the residual interference term is asymp-
totically Gaussian [43], [25]. We conclude that for large

and the estimator performs very close to the
ML estimator for known coded symbols.

In the actual receiver implementation, the EXT and APP pmfs
(3) and (4) are calculated by using (5) where is replaced
by its estimate given by (6).

2It is easily shown that̂� is the maximum likelihood (ML) estimator for
the variance of the process� from the observationz = x + �

whenx and� are white, statistically independent, and Gaussian with
x � N (0; 1) and� � N (0; � ).
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B. Soft Estimation of the Code Symbols

The (nonlinear) minimum mean square error (MMSE) sti-
mate of symbol given the observation is given by the
conditional mean [44]

(7)

where is thea posterioripmf of symbol
given the observation . We are tempted to replace

by given by the SISO output at iteration

and let , and claim that this choice
minimizes the residual interference variance and it is therefore
optimal. Unfortunately, this reasoning is incorrect. An intuitive
way of seeing this is by contradiction: if the truea posteriori
pmfs were available at some iteration, then
optimalsymbol-by-symbol MAP decisions could be made and
there would be no need for further interference cancellation.
Moreover, theexactcalculation of APPs is in
general an NP-complete problem [1]. Therefore, if after a finite
number of iterations an iterative algorithm (with polynomial
complexity in ) obtains exact values for
the NP-completeness would be violated. Hence, we conclude
that , for anyfinite number of
iterations .

Interestingly, the above “nonlinear MMSE argument” has
been used in several papers (e.g., [22], [23], [8], [18]), some-
times with claim of optimality. On the contrary, by using a
rigorous derivation based on factor-graphs and on the applica-
tion of the sum-product algorithm, it can be shown that [25]:

1) Even for perfectly known amplitudes and SISO input
variances (i.e., and ), the
residual interference term in (2)

when using is conditionally
biased and the bias tends to cancel the useful signal, i.e.,

where is a nonnegative quantity that may depend on
and on the iteration index .

2) By using EXT-based instead of APP-based symbol es-
timates, i.e., by using , the
resulting residual interference term is conditionally un-
biased, i.e., , and the overall soft-SIC
algorithm attains better performance than its APP-based
version. Remarkably, this effect is not visible for small
channel load but, as increases, the difference be-
tween APP-based and EXT-based soft-SIC schemes is
more and more evident [27].

In passing, we notice also that a biased residual interference im-
plies that and are correlated (even for perfect ampli-
tude estimation). Hence, the variance estimator (6) is asymptot-
ically optimal for large only when the symbol soft esti-
mates are obtained from EXT pmfs.

Driven by the results of [25] and by the above considerations,
we shall use the following soft symbol estimates

(8)

which can be regarded as a “local” MMSE estimate of as-
suming that thea posterioripmf of is (even if
it is not true!).3

C. Estimation of the User Complex Amplitudes

Let denote the vector of complex am-
plitudes to be estimated. The ML estimate ofgiven the ob-
servation is given by

(9)

where is the conditional pdf of the observed signal
given , given by

(10)

where we have defined the diagonal matrix
and where we have used the fact

that the channel input is independent of the channel ampli-
tudes, so that uniform on the Cartesian
product of the code books and zero outside, since
each user selects its code word with uniform probability on
its code book and independently of the other users. From
(10), it is clear that direct ML estimation of is infeasible in
any practical case, as it has complexity proportional to the total
number of user code words .

Now, assume that the estimate and the APP
are available at iteration . Then, we

can produce an updated estimate for next iteration
by following the EM approach. In the language of the EM
algorithm [31], and play the role ofincomplete,
missingand completedata. The EM update consists of com-
puting the expected log-likelihood function of the complete
data conditionally on the incomplete data and on the current
parameter estimate (E-step), and maximizing the result with
respect to the parameter (M-step) [31]. In our case, the complete
data log-likelihood function is given by

(11)

3In [25], expression (8) is derived as a direct consequence of the application
of the sum-product algorithm, without any heuristic motivation based on MMSE
estimation. The fact that EXT-based algorithms perform better than APP-based
algorithms just puts in evidence the power and generality of the sum-product
approach to statistical inference problems on Bayesian networks (see [45] and
references therein).
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where we define the vector

...
(12)

and the matrix

(13)

with th element

for
for

By using (11), we obtain the E-step in the form

(14)

where we let and .
These are given by

(15)

and by

for
for

(16)

where and where and
denote the first and second moments of the jointa posterioripmf

, given by

(17)

By noticing that (14) is a quadratic form in and that is
nonnegative definite, the M-step is readily obtained as

(18)

The above procedure has still complexity exponential in
since the computation of the moments (17) is equivalent to the
marginalization of the joint pmf , which has
complexity exponential in . Then, we shall apply the above
EM step “locally”, i.e., by replacing by the
product of the marginal APPs produced by the SISO decoders
at the end of iteration . Namely, we use the approximation

(19)

As shown in the previous section, the APPs do not coin-
cide in general with the true marginals of the joint pmf

. However, the utility of theapproximation
(19) is twofold: on one hand, the product pmf in the LHS is

readily available from the SISO outputs. On the other hand,
thanks to the product form, the exponential complexity of the
moment computation is reduced to linear. In fact, the moments
of the product pmf are given by

for
otherwise

(20)

Finally, the proposed approximated EM updating step consists
of computing (18) where and are given by (15) and by (16)
when replacing the true moments (17) by their approximations
(20).

The complexity of (18) is then dominated by the matrix in-
verse , which must be computed at each iteration. A sub-
optimal M-step that does not require a matrix inverse can be ob-
tained by noticing that, under mild conditions on random inter-
leaving and on the uniformity of user codes, the averaged sym-
bols are symmetrically distributed (their distribution is in-
duced by the noise and by the random choice of the user code
words over the code books). Moreover, and are weakly
correlated for . Then, for large block length

. Hence, under these conditions (18) can be approximated by

(21)

Notice that both (18) and (21) are directly computed from the
SUMF outputs, since defined in (15) depends on the observed
signal only through the SUMF outputs .

D. Initialization and Combining With the Training Phase

The overall iterative soft-SIC algorithm needs a sufficiently
reliable initial estimate of the complex user amplitudes.
Otherwise, for completely unknown , the SISO decoders at
the first iteration yield APPs very close to , i.e.,
for all and . This yields and , which in turns
yields , so that the receiver never “bootstraps” and
remains stuck at the “zero” fixed point.

For the sake of initialization, a joint ML estimate of the com-
plex amplitudes is obtained from the training phase. This is
readily given by [44]

(22)

where and are given by (12) and by (13), respectively,
when replacing by and the code symbols by the known
training symbols . If the training sequences are mutually
orthogonal, i.e., such that , we obtain

and no matrix inverse is needed in (22). It can be shown that
this choice also minimizes the estimation error variance [46].
Then, if a set of mutually orthogonal training sequences exists,
this choice should be preferred.4

The receiver is initialized by letting . Then, at
iterations the receiver exploits the updated es-
timate provided by the EM step (18) by combining it in

4The existence of such set of training sequences depends on the training
symbol alphabet and on the training lengthT , which must be�K. See [46]
and references therein for more details.
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some way with the training-based estimate.5 We investigate the
following two methods for combining the training phase with
the EM update.

1) Mixing Method: For , the “local” EM
estimation described above is applied to the incomplete data

with missing data , by treating as known
parameters. The same result is obtained by including the
known training symbols in the missing data and by defining
their marginal pmfs as if and if

, so that for training symbols we have
[29]. After straightforward algebra, completely analogous to
the derivation of the previous section and not reported here for
the sake of space limitation, we obtain themixingestimator as

(23)

2) Combining Method:Assume for simplicity that
the training sequences are mutually orthogonal. Then,

with . In particular,
the training-based estimator is unbiased.

Now, from (15) and (1) we obtain

where and with
. By using this into (18), we have

(24)

Since unless the code symbols are perfectly known, the
result of EM is biased. For the sake of simplicity, we assume that

is sufficiently large so that the following approximations hold

(25)

(this follows by the fact that, under mild conditions, the out-of-
diagonal terms are normalized empirical correlations between
uncorrelated zero-mean sequences, which vanish for large).
By using (25) in (24), we obtain the biased EM estimate of user

amplitude as

(26)

where

5The efficient use of the available training symbols in addition to some blind
parameter estimation technique is a problem common to manysemi-blind
schemes [47].

and where is the th component of
, with

Now, our goal is to obtain a combined estimator in the form

(27)

where the coefficients and are chosen in order to minimize
the error variance subject to the unbiased constraint, i.e., they
are the solution of

minimize

subject to

Since and are mutually independent (they depend on
the mutually independent noise samplesand in the data
and training phases), we obtain easily the solution of the above
problem as

(28)

One last problem is represented by the fact thatdepends on
the unknown code symbols . Then, an estimate of can
be obtained as follows. We notice that

for
for

Since is the maximuma posteriori symbol-by-
symbol decision on the code symbol based on the a
posteriori pmf output by the SISO decoder at
iteration , for large the following approximation holds

(29)

where is the symbol error probability (on the coded symbols,
not on the information bits!) at the output of the SISO decoder
for user at iteration . If the residual interference plus noise
process is Gaussian with variance , the error prob-

ability is a known function of , determined by the user
code . This can be pre-computed and stored in a look-up table,
and an estimate of can be easily obtained from the estimate

given by (6). Finally, can be approximated by replacing
by in (29).
Remark: We provide a qualitative and intuitive discussion on

the behavior of the mixing and combining methods.
The mixing method suffers from bias in the case of large

and (which is clearly the most interesting case, as it
is usually desirable to maximize the channel load and minimize
the length of the training phase). In fact, suppose that at iteration

the signal at the input of each SISO decoder is “very
noisy” since the interference has not been removed yet and
is large. Then, the averaged symbols output by the SISO
decoders are all close to zero. Assuming orthogonal training
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sequences (the best case), the mixing method yields
and noise. The resulting estimator

is

noise

which is clearly biased. In particular, if , the bias
might prevent the whole receiver to bootstrap.6

On the contrary, the combining method (assumingknown)
provides an unbiased estimate at each iteration. At the first it-

erations, when , then and
, i.e., only the result of training-based estimation is used. As

the soft-SIC cleans-up the signal from interference andbe-
comes small (converging to the single-user performance), then

and
. These limiting values are precisely the maximal-ratio com-

bining coefficient [41] for estimating from the unbiased noisy
observations and , with and indepen-
dent, Gaussian, with covariances and , re-
spectively. Comparisons between the mixing and the combining
methods are provided in Section IV.

E. Algorithm Summary

Fig. 2 shows the block diagram of the proposed receiver. The
users are ranked in decreasing order of their estimated signal-to-
interference ratio (SIR), given by

Without loss of generality, we assume that the decoding order is
. The algorithm is initialized by letting
for all and and . Then, we have:

• User loop: For , do
• Symbol loop: For , do
• Compute the soft-SIC signal samples according to (2) and

the estimated residual interference plus noise variance
according to (6).

• Compute the th SISO decoder EXT and APP outputs and
compute the soft interference estimate according to
(8) and the average symbols according to (20).

• End symbol loop.
• End user loop.
• Parameter estimation update: If the mixing method is

used, compute the updated amplitude estimate according
to (23). If the combining method is used, compute the
EM amplitude estimate according to (18) and the updated
estimate according to (27).

6Interestingly, in [29], training symbols are used in an iterative joint decoder
and channel estimation scheme according to the mixing method. The analysis
in [29] is uniquely based on propagating the variances of residual interference
and of channel estimation errors from one iteration to the next, and does not take
into account the bias. Unfortunately, the interference cancellation algorithm of
[29] is based on APPs, and hence, it is plagued by biased residual interference
[25], and the mixing method yields biased channel estimates (as outlined here).
Therefore, the results of [29] are questionable.

Fig. 2. Block diagram of the proposed soft-SIC receiver with iterative EM
channel estimation (only two iteration stages are shown for simplicity). APP
and EXT denote soft code symbol estimates obtained from APP and EXT SISO
outputs. The “IC” blocks denote interference cancellation and matched filtering.

• If , make symbol-by-symbol decisions on the in-
formation bits APP outputs of the SISO decoders, other-
wise let and go back to the user loop.

IV. RESULTS

In order to demonstrate the performance of the proposed
soft-SIC receiver, we considered the following simulation
setting, loosely inspired by the UMTS-TDD system [3]:

• Spreading factor , QPSK chips with “short”
random spreading sequences. A new set ofsequences
is generated randomly and independently with i.i.d. ele-
ments at each frame. Obviously, the bit error rate (BER)
is averaged over several frames so that the effect of the
random sequences is smoothed.

• The user code is the same for all users. For the sake of
simplicity, we chose the four-state rate- convolutional
code (CC) with generators (octal notation [41]).

• Code block length coded symbols, corre-
sponding to 1000 information bits per frame.

• and users, corresponding to channel loads of
2.0 and 2.5 users per chip, respectively.

• Training sequence lengths and symbols.
• Users have the same received power. The channel com-

plex amplitudes are given by where
is the user coding rate ( in our case), is

the energy per information bit and is a uniformly dis-
tributed random variable over , independently gen-
erated for each user.

• We considered a fixed maximum number of SIC iterations
, in all cases.

In these examples, we considered only the equal-rate equal-
power users for the sake of space limitation and because this is a
worst-case for iterative soft-SIC decoders [14], [15]. In [25], by
using the technique ofdensity evolution, which is now a stan-
dard tool for the analysis of iterative “message passing” algo-
rithms [45], it is shown that the soft interference cancellation
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Fig. 3. K = 40; L = 16; N = 2000, CC (5; 7) , perfect channel
knowledge.

algorithm considered here at target , with perfect
channel parameter knowledge, CC user codes and equal
power users attains channel load of three users/chip. The re-
quired is 6 dB. Fig. 3 shows the BER curves for
users and perfect channel knowledge (all BER curves show the
worst user performance, which in the equal power case is usu-
ally, but not necessarily, obtained by the user decoded first). The
load in this case is , below the limit of 3 predicted
by the analysis of [25]. For dB and 10 iterations
the single-user BER performance is achieved for all users. Ob-
viously, for smaller the convergence to the single-user BER
occurs with less iterations and at lower threshold.

Figs. 4–6 show the BER of the system with users and
training symbols per frame, with training estimation

only, and EM training estimation with mixing and combining
methods, respectively. Training-only estimation prevents the re-
ceiver to achieve the single-user BER, since interference cannot
be canceled completely because of the estimation errors which
do not vanish with iterations. The combining method shows
faster convergence than the mixing method. This confirms the
qualitative bias analysis made in the remark of Section III-C.
However, for such “light” load7 the difference between the two
methods is not very significant.

Figs. 7–9 show the BER of the system with users
and training symbols per frame, with training-estima-
tion only, and EM training estimation with mixing and com-
bining methods, respectively. With only four training symbols,
the degradation of system with training-only estimation is very
evident (notice that for and it is obviously
not possible to make the training sequences mutually orthog-
onal, and this contributes to poor channel estimation). Also, the
better convergence properties of the combining method versus
the mixing method are more evident: the combining method at-
tains the single-user BER at dB, while the mixing
method attains it at dB.

7It is worthwhile to point out here thatK = 32 users with spreading factor
L = 16 is a load already far beyond any conventional practical CDMA system
[2], [3]. We call this load “light” since it is far from the threshold load predicted
by the analysis of [25].

Fig. 4. K = 32; L = 16;N = 2000, CC (5;7) , training-only estimation
with T = 32.

Fig. 5. K = 32; L = 16;N = 2000, CC (5;7) , EM+training estimation
with T = 32 and the mixing method.

Fig. 6. K = 32; L = 16;N = 2000, CC (5;7) , EM+training estimation
with T = 32 and the combining method.
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Fig. 7. K = 32; L = 16;N = 2000, CC (5; 7) , training-only estimation
with T = 4.

Fig. 8. K = 32; L = 16;N = 2000, CC (5;7) , EM+training estimation
with T = 4 and the mixing method.

Fig. 9. K = 32; L = 16;N = 2000, CC (5;7) , EM+training estimation
with T = 4 and the combining method.

Fig. 10. K = 40; L = 16;N = 2000, CC(5;7) , EM+training estimation
with T = 32 and the mixing method.

Fig. 11. K = 40; L = 16;N = 2000, CC(5;7) , EM+training estimation
with T = 32 and the combining method.

In order to put in evidence that the bias in the mixing method
might prevent the receiver to converge to the single-user BER
while the combining method still works, we consider the case

and (again, orthogonal training sequences are
not possible here). Figs. 10 and 11 show the BER of this system.
The mixing method does not converge for the range of
considered in our simulations, since the estimated amplitudes
after the first iteration are biased by a factor

, which prevents cancellation, and the received does not
bootstrap. On the contrary, the combining method is still able to
converge for dB. By comparing Fig. 3 with Fig. 11,
we can quantify the degradation due to unknown channel am-
plitudes: with iterations this is about 1.6 dB at

dB at and dB at
since in this BER range both systems achieve the single-user
performance.
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V. CONCLUSION

We proposed a low-complexity iterative soft-SIC algorithm
for joint data detection and channel parameter estimation, based
on SISO single-user decoders and soft interference cancellation.
The channel parameters estimates are updated along with the
receiver iterations. The updating operation has the form of a
likelihood function expectation of followed by maximization,
i.e., it is formally equivalent to the basic EM step.

Even though similar algorithms can be found (with minor
variations) in several other works (see the discussion in Section
I), here we investigated in the details several new important as-
pects, namely: a simple and efficient way to estimate the residual
interference plus noise variance at the SISO inputs; the issue of
soft interference estimation based on EXT pmfs versus the con-
ventional approach of using APPs; the correct formulation of
EM estimation with channel coding, and the key approximation
to bring complexity from exponential down to polynomial in the
number of users; the use of training-based estimation together
with EM updating. In particular, we provided a new method
for combining the unbiased channel estimates provided by ML
training-based estimation with the biased estimates provided by
EM. The new method (referred to as “combining”) provides
much better convergence of the overall receiver than the more
conventional method consisting of treating training symbols and
unknown code symbols together (referred to as “mixing”).

The full investigation of the optimal tradeoff between training
symbols fraction and channel load is out of the scope
of this paper. However, from the simulation results shown here,
we can get some conclusions on the overall benefit of the pro-
posed approach. With our receiver, we can fit
users/chip with coding rate bit/symbol at

, with actual channel estimation ( training sym-
bols out of coded symbol per frame) and nonre-
cursive four-state convolutional codes. The required is
about 6.7 dB, i.e., user dB, with 10 iterations (10
SISO decoding per user per frame). In UMTS [3], [2], con-
ventional SUMF receivers are envisaged, but very complex and
powerful user channel codes are considered (either turbo-codes
or 256-state convolutional codes). Consider, e.g., a conventional
system with turbo-codes of rate , optimized inter-
leavers of size 1024 [26] (corresponding to coded block length

, similar to our case), recursive systematic four-state
CCs with generators and eight full iterations, corre-
sponding to 16 SISO decoding per user per frame.8

In the conventional system, we assume perfect channel es-
timation since channel estimation is much less critical than in
the soft-SIC system. The turbo-code achieves
at dB. The SINR at the output of the SUMF for
equal-power users and random spreading sequences, in the limit
for with [48], is given by

. Then, the limit load of the conventional
turbo-encoded system is . By let-
ting dB (as required by the target BER perfor-
mance) and dB (as in the soft-SIC system), we

8We allow more complexity in SISO decoding for the conventional system (16
SISO decoding steps instead of ten) since our system requires also interference
cancellation, which involves some additional complexity.

obtain . Even by letting , the maximum
possible channel load is not larger than . We conclude
that the proposed receiver withactualchannel estimation is able
to (at least) double the cell capacity at roughly the same com-
plexity of the conventional turbo-encoded system.
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